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Abstract. The goal of this review article is to provide a survey about the
foundations of semilinear stochastic partial differential equations. In particular,
we provide a detailed study of the concepts of strong, weak and mild solutions,
establish their connections, and review a standard existence- and uniqueness
result. The proof of the existence result is based on a slightly extended version
of the Banach fixed point theorem.
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1. Introduction

Semilinear stochastic partial differential equations (SPDEs) have a broad spec-
trum of applications including natural sciences and economics. The goal of this
review article is to provide a survey about the foundations of SPDEs, which have
been presented in the monographs [5, 19, 13]. It may be beneficial for students who
are already aware about stochastic calculus in finite dimensions and who wish to
have survey material accompanying the aforementioned references. In particular,
we review the relevant results from functional analysis about unbounded operators
in Hilbert spaces and strongly continuous semigroups.

A large part of this article is devoted to a detailed study of the concepts of strong,
weak and mild solutions to SPDEs, to establish their connections, and to review
and prove a standard existence- and uniqueness result. The proof of the existence
result is based on a slightly extended version of the Banach fixed point theorem.

In the last part of this article we study invariant manifolds for weak solutions to
SPDEs. This topic does not belong to the general theory of SPDEs, but it uses and
demonstrates many of the results and techniques of the previous sections. It arises
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from the natural desire to express the solutions of SPDEs, which generally live in
an infinite dimensional state space, by means of a finite dimensional state process,
and thus, to ensure larger analytical tractability.

This article should also serve as an introductory article to the general theory of
SPDEs and enable the reader to learn about further topics and generalizations in
this field. Possible further directions are the study of martingale solutions (see, e.g.,
[5, 13]), SPDEs with jumps (see, e.g., [18] for SPDEs driven by Lévy processes and,
e.g., [1, 9, 15, 23] for SPDEs driven by Poisson random measures), and support
theorems as well as further invariance results for SPDEs, see, e.g., [16, 17].

The remainder of this article is organized as follows: In Sections 2 and 3 we
review the required results from functional analysis. In particular, we collect the
relevant material about unbounded operators and strongly continuous semigroups.
In Section 4 we review stochastic processes in infinite dimension. In particular, we
recall the definition of a trace class Wiener process and outline the construction of
the Itô integral. In Section 5 we present the solution concepts for SPDEs and study
their various connections. In Section 6 we review results about the regularity of
stochastic convolution integrals, which is essential for the study of mild solutions to
SPDEs. In Section 7 we review a standard existence- and uniqueness result. Finally,
in Section 8 we deal with invariant manifolds for weak solutions to SPDEs.

2. Unbounded operators in Hilbert spaces

In this section, we review the relevant properties about unbounded operators.
We shall start with operators in Banach spaces, and focus on operators in Hilbert
spaces later on. The reader can find the proofs of the upcoming results in any
textbook about functional analysis, such as [20] or [24].

Let X and Y be Banach spaces. For a linear operator A : X ⊃ D(A) → Y ,
defined on some subspace D(A) of X, we call D(A) the domain of A.

2.1. Definition. A linear operator A : X ⊃ D(A) → Y is called closed, if for
every sequence (xn)n∈N ⊂ D(A), such that the limits x = limn→∞ xn ∈ X and
y = limn→∞Axn ∈ Y exist, we have x ∈ D(A) and Ax = y.

2.2. Definition. A linear operator A : X ⊃ D(A) → Y is called densely defined,
if its domain D(A) is dense in X, that is D(A) = X.

2.3. Definition. Let A : X ⊃ D(A)→ X be a linear operator.
(1) The resolvent set of A is defined as

ρ(A) := {λ ∈ C : λ−A : D(A)→ X is bijective and (λ−A)−1 ∈ L(X)}.

(2) The spectrum of A is defined as σ(A) := C \ ρ(A).
(3) For λ ∈ ρ(A) we define the resolvent R(λ,A) ∈ L(X) as

R(λ,A) := (λ−A)−1.

Now, we shall introduce the adjoint operator of a densely defined operator in a
Hilbert space. Recall that a for a bounded linear operator T ∈ L(H1, H2), mapping
between two Hilbert spaces H1 and H2, the adjoint operator is the unique bounded
linear operator T ∗ ∈ L(H2, H1) such that

〈Tx, y〉H2
= 〈x, T ∗y〉H1

for all x ∈ H1 and y ∈ H2.

In order to extend this definition to unbounded operators, we recall the following
extension result for linear operators.

2.4. Proposition. Let X be a normed space, let Y be a Banach space, let D ⊂ X
be a dense subspace and let Φ : D → Y be a continuous linear operator. Then
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there exists a unique continuous extension Φ̂ : X → Y , that is, a continuous linear
operator with Φ̂|D = Φ. Moreover, we have ‖Φ̂‖ = ‖Φ‖.

Now, let H be a Hilbert space. We recall the representation theorem of Fréchet-
Riesz. In the sequel, the space H ′ denotes the dual space of H.

2.5. Theorem. For every x′ ∈ H ′ there exists a unique element x ∈ H with
〈x′, •〉 = 〈x, •〉. In addition, we have ‖x‖ = ‖x′‖.

Let A : H ⊃ D(A)→ H be a densely defined operator. We define the subspace

D(A∗) := {y ∈ H : x 7→ 〈Ax, y〉 is continuous on D(A)}.(2.1)

Let y ∈ D(A∗) be arbitrary. By virtue of the extension result for linear operators
(Proposition 2.4), the operator

D(A)→ R, x 7→ 〈Ax, y〉
has a unique extension to a linear functional z′ ∈ H ′. By the representation theorem
of Fréchet-Riesz (Theorem 2.5) there exists a unique element z ∈ H with 〈z′, •〉 =
〈z, •〉. This implies

〈Ax, y〉 = 〈x, z〉 for all x ∈ D(A).

Setting A∗y := z, this defines a linear operator A∗ : H ⊃ D(A∗)→ H, and we have

〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ D(A) and y ∈ D(A∗).

2.6. Definition. The operator A∗ : H ⊃ D(A∗)→ H is called the adjoint operator
of A.

2.7. Proposition. Let A : H ⊃ D(A)→ H be densely defined and closed. Then A∗
is densely defined and we have A = A∗∗.

2.8. Lemma. Let H be a separable Hilbert space and let A : H ⊃ D(A) → H be a
closed operator. Then the domain (D(A), ‖ · ‖D(A)) endowed with the graph norm

‖x‖D(A) =
(
‖x‖2 + ‖Ax‖2

)1/2
is a separable Hilbert space, too.

3. Strongly continuous semigroups

In this section, we present the required results about strongly continuous semi-
groups. Concerning the proofs of the upcoming results, the reader is referred to any
textbook about functional analysis, such as [20] or [24]. Throughout this section,
let X be a Banach space.

3.1.Definition. Let (St)t≥0 be a family of continuous linear operators St : X → X,
t ≥ 0.

(1) The family (St)t≥0 is a called a strongly continuous semigroup (or C0-
semigroup), if the following conditions are satisfied:
• S0 = Id,
• Ss+t = SsSt for all s, t ≥ 0,
• limt→0 Stx = x for all x ∈ X.

(2) The family (St)t≥0 is called a norm continuous semigroup, if the following
conditions are satisfied:
• S0 = Id,
• Ss+t = SsSt for all s, t ≥ 0,
• limt→0 ‖St − Id‖ = 0.

Note that every norm continuous semigroup is also a C0-semigroup. The following
growth estimate (3.1) will often be used when dealing with SPDEs.
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3.2. Lemma. Let (St)t≥0 be a C0-semigroup. Then there are constants M ≥ 1 and
ω ∈ R such that

‖St‖ ≤Meωt for all t ≥ 0.(3.1)

3.3. Definition. Let (St)t≥0 be a C0-semigroup.
(1) The semigroup (St)t≥0 is called a semigroup of contractions (or contrac-

tive), if

‖St‖ ≤ 1 for all t ≥ 0,(3.2)

that is, the growth estimate (3.1) is satisfied with M = 1 and ω = 0.
(2) The semigroup (St)t≥0 is called a semigroup of pseudo-contractions (or

pseudo-contractive), if there exists a constant ω ∈ R such that

‖St‖ ≤ eωt for all t ≥ 0,(3.3)

that is, the growth estimate (3.1) is satisfied with M = 1.

If (St)t≥0 is a semigroup of pseudo-contractions with growth estimate (3.3), then
(Tt)t≥0 given by

Tt := e−ωtSt, t ≥ 0

is a semigroup of contractions. Hence, every pseudo-contractive semigroup can be
transformed into a semigroup of contractions, which explains the term pseudo-
contractive.

3.4. Lemma. Let (St)t≥0 be a C0-semigroup. Then the following statements are
true:

(1) The mapping

R+ ×X → X, (t, x) 7→ Stx

is continuous.
(2) For all x ∈ X and T ≥ 0 the mapping

[0, T ]→ X, t 7→ Stx

is uniformly continuous.

3.5. Definition. Let (St)t≥0 be a C0-semigroup. The infinitesimal generator (in
short generator) of (St)t≥0 is the linear operator A : X ⊃ D(A) → X, which is
defined on the domain

D(A) :=

{
x ∈ X : lim

t→0

Stx− x
t

exists
}
,

and given by

Ax := lim
t→0

Stx− x
t

.

Note that the domain D(A) is indeed a subspace of X. The following result gives
some properties of the infinitesimal generator of a C0-semigroup. Recall that we
have provided the required concepts in Definitions 2.1 and 2.2.

3.6. Proposition. The infinitesimal generator A : X ⊃ D(A) → X of a C0-
semigroup (St)t≥0 is densely defined and closed.

We proceed with some examples of C0-semigroups and their generators.
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3.7. Example. For every bounded linear operator A ∈ L(X) the family (etA)t≥0

given by

etA :=

∞∑
n=0

tnAn

n!

is a norm continuous semigroup with generator A. In particular, we have D(A) =
X.

3.8. Example. We consider the separable Hilbert space X = L2(R). Let (St)t≥0 be
the shift semigroup defined as

Stf := f(t+ •), t ≥ 0.

Then (St)t≥0 is a semigroup of contractions with generator A : L2(R) ⊃ D(A) →
L2(R) given by

D(A) = {f ∈ L2(R) : f is absolutely continuous and f ′ ∈ L2(R)},
Af = f ′.

3.9. Example. On the separable Hilbert space X = L2(Rd) we define the heat
semigroup (St)t≥0 by S0 := Id and

(Stf)(x) :=
1

(4πt)d/2

∫
Rd

exp

(
− |x− y|

2

4t

)
f(y)dy, t > 0,

that is, Stf arises as the convolution of f with the density of the normal distribution
N(0, 2t). Then (St)t≥0 is a semigroup of contractions with generator A : L2(Rd) ⊃
D(A)→ L2(Rd) given by

D(A) = W 2(Rd), Af = ∆f.

Here W 2(Rd) denotes the Sobolev space

W 2(Rd) = {f ∈ L2(Rd) : D(α)f ∈ L2(Rd) exists for all α ∈ Nd0 with |α| ≤ 2}
and ∆ the Laplace operator

∆ =

d∑
i=1

∂2

∂x2
i

.

We proceed with some results regarding calculations with strongly continuous
semigroups and their generators.

3.10. Lemma. Let (St)t≥0 be a C0-semigroup with infinitesimal generator A. Then
the following statements are true:

(1) For every x ∈ D(A) the mapping

R+ → X, t 7→ Stx

belongs to class C1(R+;X), and for all t ≥ 0 we have Stx ∈ D(A) and
d

dt
Stx = AStx = StAx.

(2) For all x ∈ X and t ≥ 0 we have
∫ t

0
Ssxds ∈ D(A) and

A

(∫ t

0

Ssx ds

)
= Stx− x.

(3) For all x ∈ D(A) and t ≥ 0 we have∫ t

0

SsAxds = Stx− x.
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The following result shows that the strongly continuous semigroup (St)t≥0 asso-
ciated to some generator A is unique. This explains the term generator.

3.11. Proposition. Two C0-semigroups (St)t≥0 and (Tt)t≥0 with the same infini-
tesimal generator A coincide, that is, we have St = Tt for all t ≥ 0.

The next result characterizes all norm continuous semigroups in terms of their
generators.

3.12. Proposition. Let (St)t≥0 be a C0-semigroup with infinitesimal generator A.
Then the following statements are equivalent:

(1) The semigroup (St)t≥0 is norm continuous.
(2) The operator A is continuous.
(3) The domain of A is given by D(A) = X.

If the previous conditions are satisfied, then we have St = etA for all t ≥ 0.

Now, we are interested in characterizing all linear operators A which are the in-
finitesimal generator of some strongly continuous semigroup (St)t≥0. The following
theorem of Hille-Yosida gives a characterization in terms of the resolvent, which we
have introduced in Definition 2.3.

3.13. Theorem. (Hille-Yosida theorem) Let A : X ⊃ D(A) → X be a linear
operator and let M ≥ 1, ω ∈ R be constants. Then the following statements are
equivalent:

(1) A is the generator of a C0-semigroup (St)t≥0 with growth estimate (3.1).
(2) A is densely defined, closed, we have (ω,∞) ⊂ ρ(A) and

‖R(λ,A)n‖ ≤M(λ− ω)−n for all λ ∈ (ω,∞) and n ∈ N.

In particular, we obtain the following characterization of the generators of semi-
groups of contractions:

3.14.Corollary. For a linear operator A : X ⊃ D(A)→ X the following statements
are equivalent:

(1) A is the generator of a semigroup (St)t≥0 of contractions.
(2) A is densely defined, closed, we have (0,∞) ⊂ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
for all λ ∈ (0,∞).

3.15. Proposition. Let (St)t≥0 be a C0-semigroup on X with generator A. Then
the family (St|D(A))t≥0 is a C0-semigroup on (D(A), ‖ · ‖D(A)) with generator A :

D(A2) ⊂ D(A)→ D(A2), where the domain is given by

D(A2) = {x ∈ D(A) : Ax ∈ D(A)}.
Recall that we have introduced the adjoint operator for operators in Hilbert

spaces in Definition 2.6.

3.16. Proposition. Let H be a Hilbert space and let (St)t≥0 be a C0-semigroup on
H with generator A. Then the family of adjoint operators (S∗t )t≥0 is a C0-semigroup
on H with generator A∗.

4. Stochastic processes in infinite dimension

In this section, we recall the required foundations about stochastic processes in
infinite dimension. In particular, we recall the definition of a trace class Wiener
process and outline the construction of the Itô integral.

In the sequel, (Ω,F , (Ft)t≥0,P) denotes a filtered probability space satisfying
the usual conditions. Let H be a separable Hilbert space and let Q ∈ L(H) be a
nuclear, self-adjoint, positive definite linear operator.
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4.1. Definition. A H-valued, adapted, continuous process W is called a Q-Wiener
process, if the following conditions are satisfied:

• We have W0 = 0.
• The random variable Wt−Ws and the σ-algebra Fs are independent for all

0 ≤ s ≤ t.
• We have Wt −Ws ∼ N(0, (t− s)Q) for all 0 ≤ s ≤ t.

In Definition 4.1, the distribution N(0, (t − s)Q) is a Gaussian measure with
mean 0 and covariance operator (t− s)Q, see, e.g. [5, Section 2.3.2]. The operator
Q is also called the covariance operator of the Wiener process W . As Q is a trace
class operator, we also call W a trace class Wiener process.

Now, let W be a Q-Wiener process. Then, there exist an orthonormal basis
(ej)j∈N of H and a sequence (λj)j∈N ⊂ (0,∞) with

∑
j∈N λj <∞ such that

Qu =
∑
j∈N

λj〈u, ej〉H ej , u ∈ H

namely, the λj are the eigenvalues of Q, and each ej is an eigenvector corresponding
to λj . The space H0 := Q1/2(H), equipped with the inner product

〈u, v〉H0
:= 〈Q−1/2u,Q−1/2v〉H,

is another separable Hilbert space and (
√
λjej)j∈N is an orthonormal basis. Ac-

cording to [5, Proposition 4.1], the sequence of stochastic processes (βj)j∈N defined
as

βj :=
1√
λj
〈W, ej〉H, j ∈ N(4.1)

is a sequence of real-valued independent standard Wiener processes and we have
the expansion

W =
∑
j∈N

√
λjβ

jej .

Now, let us briefly sketch the construction of the Itô integral with respect to the
Wiener process W . Further details can be found in [5, 13]. We denote by L0

2(H) :=
L2(H0, H) the space of Hilbert-Schmidt operators from H0 into H, which, endowed
with the Hilbert-Schmidt norm

‖Φ‖L0
2(H) :=

(∑
j∈N

λj‖Φej‖2
)1/2

, Φ ∈ L0
2(H)

itself is a separable Hilbert space. The construction of the Itô integral is divided
into three steps:

(1) For every L(H, H)-valued simple process of the form

X = X01{0} +

n∑
i=1

Xi1(ti,ti+1]

with 0 = t1 < . . . < tn+1 = T and Fti -measurable random variables Xi :
Ω→ L(H, H) for i = 1, . . . , n we set∫ t

0

XsdWs :=

n∑
i=1

Xi(Wt∧ti+1
−Wt∧ti).

(2) For every predictable L0
2(H)-valued process X satisfying

E
[ ∫ T

0

‖Xs‖2L0
2(H)ds

]
<∞
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we extend the Itô integral
∫ t

0
XsdWs by an extension argument for linear

operators. In particular, we obtain the Itô isometry

E

[∥∥∥∥∫ T

0

XsdWs

∥∥∥∥2
]

= E
[ ∫ T

0

‖Xs‖2L0
2(H)ds

]
.(4.2)

(3) By localization, we extend the Itô integral
∫ t

0
XsdWs for every predictable

L0
2(H)-valued process X satisfying

P
(∫ t

0

‖Φs‖2L0
2(H)ds <∞

)
= 1 for all t ≥ 0.

The Itô integral (
∫ t

0
XsdWs)t≥0 is an H-valued, continuous, local martingale, and

we have the series expansion∫ t

0

XsdWs =
∑
j∈N

∫ t

0

Xj
sdβ

j
s , t ≥ 0,(4.3)

where Xj :=
√
λjXej for each j ∈ N. An indispensable tool for stochastic calculus

in infinite dimensions is Itô’s formula, which we shall recall here.

4.2. Theorem (Itô’s formula). Let E be another separable Hilbert space, let f ∈
C1,2,loc
b (R+×H;E) be a function and let X be an H-valued Itô process of the form

Xt = X0 +

∫ t

0

Ysds+

∫ t

0

ZsdWs, t ≥ 0.

Then (f(t,Xt))t≥0 is an E-valued Itô process, and we have P–almost surely

f(t,Xt) = f(0, X0) +

∫ t

0

(
Dsf(s,Xs) +Dxf(s,Xs)Ys

+
1

2

∑
j∈N

Dxxf(s,Xs)(Z
j
s , Z

j
s)

)
ds+

∫ t

0

Dxf(s,Xs)ZsdWs, t ≥ 0,

where we use the notation Zj :=
√
λjZej for each j ∈ N.

Proof. This result is a consequence of [13, Theorem 2.9]. �

5. Solution concepts for SPDEs

In this section, we present the concepts of strong, mild and weak solutions to
SPDEs and discuss their relations.

Let H be a separable Hilbert space and let (St)t≥0 be a C0-semigroup on H with
infinitesimal generator A. Furthermore, let W be a trace class Wiener process on
some separable Hilbert space H. We consider the SPDE{

dXt = (AXt + α(t,Xt))dt+ σ(t,Xt)dWt

X0 = h0.
(5.1)

Here α : R+ ×H → H and σ : R+ ×H → L0
2(H) are measurable mappings.

5.1. Definition. Let h0 : Ω→ H be a F0-measurable random variable and let τ > 0
be a strictly positive stopping time. Furthermore, let X = X(h0) be an H-valued,
continuous, adapted process such that

P
(∫ t∧τ

0

(
‖Xs‖+ ‖α(s,Xs)‖+ ‖σ(s,Xs)‖2L0

2(H)

)
ds <∞

)
= 1 for all t ≥ 0.
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(1) X is called a local strong solution to (5.1), if

Xt∧τ ∈ D(A) for all t ≥ 0, P–almost surely,(5.2)

P
(∫ t∧τ

0

‖AXs‖ds <∞
)

= 1 for all t ≥ 0(5.3)

and P–almost surely we have

Xt∧τ = h0 +

∫ t∧τ

0

(
AXs + α(s,Xs)

)
ds+

∫ t∧τ

0

σ(s,Xs)dWs, t ≥ 0.

(2) X is called a local weak solution to (5.1), if for all ζ ∈ D(A∗) the following
equation is fulfilled P–almost surely:

〈ζ,Xt∧τ 〉 = 〈ζ, h0〉+

∫ t∧τ

0

(
〈A∗ζ,Xs〉+ 〈ζ, α(s,Xs)〉

)
ds

+

∫ t∧τ

0

〈ζ, σ(s,Xs)〉dWs, t ≥ 0.

(3) X is called a local mild solution to (5.1), if P–almost surely we have

Xt∧τ = St∧τh0 +

∫ t∧τ

0

S(t∧τ)−sα(s,Xs)ds+

∫ t∧τ

0

S(t∧τ)−sσ(s,Xs)dWs, t ≥ 0.

We call τ the lifetime of X. If τ ≡ ∞, then we call X a strong, weak or mild
solution to (5.1), respectively.

5.2. Remark. Note that the concept of a strong solution is rather restrictive, be-
cause condition (5.2) has to be fulfilled.

For what follows, we fix a F0-measurable random variable h0 : Ω → H and a
strictly positive stopping time τ > 0.

5.3. Proposition. Every local strong solution X to (5.1) with lifetime τ is also a
local weak solution to (5.1) with lifetime τ .

Proof. Let X be a local strong solution to (5.1) with lifetime τ . Furthermore, let
ζ ∈ D(A∗) be arbitrary. Then we have P–almost surely for all t ≥ 0 the identities

〈ζ,Xt∧τ 〉 =
〈
ζ, h0 +

∫ t∧τ

0

(
AXs + α(s,Xs)

)
ds+

∫ t∧τ

0

σ(s,Xs)dWs

〉
= 〈ζ, h0〉+

∫ t∧τ

0

〈ζ,AXs + α(s,Xs)〉ds+

∫ t∧τ

0

〈ζ, σ(s,Xs)〉dWs

= 〈ζ, h0〉+

∫ t∧τ

0

(
〈A∗ζ,Xs〉+ 〈ζ, α(s,Xs)〉

)
ds+

∫ t∧τ

0

〈ζ, σ(s,Xs)〉dWs,

showing that X is also a local weak solution to (5.1) with lifetime τ . �

5.4. Proposition. Let X be a stochastic process with X0 = h0. Then the following
statements are equivalent:

(1) The process X is a local strong solution to (5.1) with lifetime τ .
(2) The process X is a local weak solution to (5.1) with lifetime τ , and we have

(5.2), (5.3).

Proof. (1) ⇒ (2): This implication is a direct consequence of Proposition 5.3.
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(2) ⇒ (1): Let ζ ∈ D(A∗) be arbitrary. Then we have P–almost surely for all t ≥ 0
the identities

〈ζ,Xt∧τ 〉 = 〈ζ, h0〉+

∫ t∧τ

0

(
〈A∗ζ,Xs〉+ 〈ζ, α(s,Xs)〉

)
ds+

∫ t∧τ

0

〈ζ, σ(s,Xs)〉dWs

= 〈ζ, h0〉+

∫ t∧τ

0

〈ζ,AXs + α(s,Xs)〉ds+

∫ t∧τ

0

〈ζ, σ(s,Xs)〉dWs

=
〈
ζ, h0 +

∫ t∧τ

0

(
AXs + α(s,Xs)

)
ds+

∫ t∧τ

0

σ(s,Xs)dWs

〉
.

By Proposition 2.7 the domain D(A∗) is dense in H, and hence we obtain P–almost
surely

Xt∧τ = h0 +

∫ t∧τ

0

(
AXs + α(s,Xs)

)
ds+

∫ t∧τ

0

σ(s,Xs)dWs, t ≥ 0.

Consequently, the process X is also a local strong solution to (5.1) with lifetime
τ . �

5.5. Corollary. Let M ⊂ D(A) be a subset such that A is continuous on M, and
let X be a local weak solution to (5.1) with lifetime τ such that

Xt∧τ ∈M for all t ≥ 0, P–almost surely.(5.4)

Then X is also a local strong solution to (5.1) with lifetime τ .

Proof. Since M ⊂ D(A), condition (5.4) implies that (5.2) is fulfilled. Moreover,
by the continuity of A on M, the sample paths of the process AX are P–almost
surely continuous, and hence, we obtain (5.3). Consequently, using Proposition 5.4,
the process X is also a local strong solution to (5.1) with lifetime τ . �

5.6. Proposition. Every strong solution X to (5.1) is also a mild solution to (5.1).

Proof. According to Lemma 2.8, the domain (D(A), ‖ · ‖D(A)) endowed with the
graph norm is a separable Hilbert space, too. Hence, by Lemma 3.10, for all t ≥ 0
the function

f : [0, t]×D(A)→ H, f(s, x) := St−sx.

belongs to the class C1,2,loc
b ([0, t]×D(A);H) with partial derivatives

Dtf(t, x) = −ASt−sx,
Dxf(t, x) = St−s,

Dxxf(t, x) = 0.

Hence, by Itô’s formula (see Theorem 4.2) and Lemma 3.10 we obtain P–almost
surely

Xt = f(t,Xt) = f(0, h0) +

∫ t

0

(
Dsf(s,Xs) +Dxf(s,Xs)(AXs + α(s,Xs))

)
ds

+

∫ t

0

Dxf(s,Xs)σ(s,Xs)dWs

= Sth0 +

∫ t

0

(
−ASt−sXs + St−s(AXs + α(s,Xs))

)
ds+

∫ t

0

St−sσ(s,Xs)dWs

= Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs.

Thus, X is also a mild solution to (5.1). �
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We recall the following technical auxiliary result without proof and refer, e.g.,
to [13, Section 3.1].

5.7. Lemma. Let T ≥ 0 be arbitrary. Then the linear space

UT := lin {gζ : g ∈ C1([0, T ];R) and ζ ∈ D(A∗)}

is dense in C1([0, T ],D(A∗)), where (D(A∗), ‖ · ‖D(A∗)) is endowed with the graph
norm.

5.8. Lemma. Let X be a weak solution to (5.1). Then for all T ≥ 0 and all
f ∈ C1([0, T ],D(A∗)) we have P–almost surely

(5.5)
〈f(t), Xt〉 = 〈f(0), h0〉+

∫ t

0

(
〈f ′(s) +A∗f(s), Xs〉+ 〈f(s), α(s,Xs)〉

)
ds

+

∫ t

0

〈f(s), σ(s,Xs)〉dWs, t ∈ [0, T ].

Proof. By virtue of Lemma 5.7, it suffices to prove formula (5.5) for all f ∈ UT .
Let f ∈ UT be arbitrary. Then there are g1, . . . , gn ∈ C1([0, T ];R) and ζ1, . . . , ζn ∈
D(A∗) for some n ∈ N such that

f(t) =

n∑
i=1

gi(t)ζi, t ∈ [0, T ].

We define the function

F : [0, T ]× Rn → R, F (t, x) :=

n∑
i=1

gi(t)xi.

Then we have F ∈ C1,2([0, T ]× Rn;R) with partial derivatives

DtF (t, x) =

n∑
i=1

g′i(t)xi,

DxF (t, x) = 〈g(t), •〉Rn ,

DxxF (t, x) = 0.

Since X is a weak solution to (5.1), the Rn-valued process

〈ζ,X〉 := 〈ζi, X〉i=1,...,n

is an Itô process with representation

〈ζ,Xt〉 = 〈ζ, h0〉+

∫ t

0

(
〈A∗ζ,Xs〉+ 〈ζ, α(s,Xs)〉

)
ds+

∫ t

0

〈ζ, σ(s,Xs)〉dWs, t ≥ 0.
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By Itô’s formula (Theorem 4.2) we obtain P–almost surely

〈f(t), Xt〉 =
〈 n∑
i=1

gi(t)ζi, Xt

〉
=

n∑
i=1

gi(t)〈ζi, Xt〉 = F (t, 〈ζ,Xt〉)

= F (0, 〈ζ, h0〉)

+

∫ t

0

(
DsF (s, 〈ζ,Xs〉) +DxF (s, 〈ζ,Xs〉)

(
〈A∗ζ,Xs〉+ 〈ζ, α(s,Xs)〉

))
ds

+

∫ t

0

DxF (s, 〈ζ,Xs〉)〈ζ, σ(s,Xs)〉dWs

=

n∑
i=1

gi(0)〈ζi, h0〉

+

∫ t

0

( n∑
i=1

g′i(t)〈ζi, Xs〉+

n∑
i=1

gi(t)
(
〈A∗ζi, Xs〉+ 〈ζi, α(s,Xs)〉

))
ds

+

∫ t

0

( n∑
i=1

gi(s)〈ζi, σ(s,Xs)〉
)
dWs t ∈ [0, T ],

and hence

〈f(t), Xt〉 =
〈 n∑
i=1

gi(0)ζi, h0

〉
+

∫ t

0

(〈 n∑
i=1

g′i(s)ζi, Xs

〉
+
〈
A∗
( n∑
i=1

gi(s)ζi

)
, Xs

〉
+
〈 n∑
i=1

gi(s)ζi, α(s,Xs)
〉)

ds

+

∫ t

0

〈 n∑
i=1

gi(s)ζi, σ(s,Xs)
〉
dWs

= 〈f(0), h0〉+

∫ t

0

(
〈f ′(s) +A∗f(s), Xs〉+ 〈f(s), α(s,Xs)〉

)
ds

+

∫ t

0

〈f(s), σ(s,Xs)〉dWs, t ∈ [0, T ].

This concludes the proof. �

5.9. Proposition. Every weak solution X to (5.1) is also a mild solution to (5.1).

Proof. By Proposition 3.16, the family (S∗t )t≥0 is a C0-semigroup with generator
A∗. Thus, Proposition 3.15 yields that the family of restrictions (S∗t |D(A∗))t≥0 is
a C0-semigroup on (D(A∗), ‖ · ‖D(A∗)) with generator A∗ : D((A∗)2) ⊂ D(A∗) →
D((A∗)2).

Now, let t ≥ 0 and ζ ∈ D((A∗)2) be arbitrary. We define the function

f : [0, t]→ D(A∗), f(s) := S∗t−sζ.

By Lemma 3.10 we have f ∈ C1([0, t];D(A∗)) with derivative

f ′(s) = −A∗S∗t−sζ = −A∗f(s).
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Using Lemma 5.8, we obtain P–almost surely

〈ζ,Xt〉 = 〈f(t), Xt〉

= 〈f(0), h0〉+

∫ t

0

〈f(s), α(s,Xs)〉ds+

∫ t

0

〈f(s), σ(s,Xs)〉dWs

= 〈S∗t ζ, h0〉+

∫ t

0

〈S∗t−sζ, α(s,Xs)〉ds+

∫ t

0

〈S∗t−sζ, σ(s,Xs)〉dWs

= 〈ζ, Sth0〉+

∫ t

0

〈ζ, St−sα(s,Xs)〉ds+

∫ t

0

〈ζ, St−sσ(s,Xs)〉dWs

=
〈
ζ, Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs

〉
.

Since, by Proposition 3.6, the domain D((A∗)2) is dense in (D(A∗), ‖ · ‖D(A∗)), we
get P–almost surely for all ζ ∈ D(A∗) the identity

〈ζ,Xt〉 =
〈
ζ, Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs

〉
.

Since, by Proposition 3.6, the domain D(A∗) is dense in H, we obtain P–almost
surely

Xt = Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs,

proving that X is a mild solution to (5.1). �

5.10. Remark. Now, the proof of Proposition 5.6 is an immediate consequence of
Propositions 5.3 and 5.9.

We have just seen that every weak solution to (5.1) is also a mild solution. Under
the following regularity condition (5.6), the converse of this statement holds true
as well.

5.11. Proposition. Let X be a mild solution to (5.1) such that

E
[ ∫ T

0

‖σ(s,Xs)‖2L0
2(H)ds

]
<∞ for all T ≥ 0.(5.6)

Then X is also a weak solution to (5.1).

Proof. Let t ≥ 0 and ζ ∈ D(A∗) be arbitrary. Using Lemma 3.10, we obtain P–
almost surely

∫ t

0

〈A∗ζ, Ssh0〉ds =
〈
A∗ζ,

∫ t

0

Ssh0ds︸ ︷︷ ︸
∈D(A)

〉
=
〈
ζ,A

(∫ t

0

Ssh0ds

)〉
= 〈ζ, Sth0 − h0〉

= 〈ζ, Sth0〉 − 〈ζ, h0〉.
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By Fubini’s theorem for Bochner integrals (see [13, Section 1.1, page 21]) and
Lemma 3.10 we obtain P–almost surely

∫ t

0

〈
A∗ζ,

∫ s

0

Ss−uα(u,Xu)du
〉
ds =

〈
A∗ζ,

∫ t

0

(∫ s

0

Ss−uα(u,Xu)du

)
ds
〉

=
〈
A∗ζ,

∫ t

0

(∫ t

u

Ss−uα(u,Xu)ds

)
du
〉

=

∫ t

0

〈
A∗ζ,

∫ t

u

Ss−uα(u,Xu)ds
〉
du

=

∫ t

0

〈
A∗ζ,

∫ t−s

0

Suα(s,Xs)du︸ ︷︷ ︸
∈D(A)

〉
ds =

∫ t

0

〈
ζ,A

(∫ t−s

0

Suα(s,Xs)du

)〉
ds

=

∫ t

0

〈ζ, St−sα(s,Xs)− α(s,Xs)〉ds

=
〈
ζ,

∫ t

0

St−sα(s,Xs)ds
〉
−
∫ t

0

〈ζ, α(s,Xs)〉ds.

Due to assumption (5.6), we may use Fubini’s theorem for stochastic integrals (see
[13, Theorem 2.8]), which, together with Lemma 3.10 gives us P–almost surely

∫ t

0

〈
A∗ζ,

∫ s

0

Ss−uσ(u,Xu)dWu

〉
ds =

〈
A∗ζ,

∫ t

0

(∫ s

0

Ss−uσ(u,Xu)dWu

)
ds
〉

=
〈
A∗ζ,

∫ t

0

(∫ t

u

Ss−uσ(u,Xu)ds

)
dWu

〉
=

∫ t

0

〈
A∗ζ,

∫ t

u

Ss−uσ(u,Xu)ds
〉
dWu

=

∫ t

0

〈
A∗ζ,

∫ t−s

0

Suσ(s,Xs)du︸ ︷︷ ︸
∈D(A)

〉
dWs =

∫ t

0

〈
ζ,A

(∫ t−s

0

Suσ(s,Xs)du

)〉
dWs

=

∫ t

0

〈ζ, St−sσ(s,Xs)− σ(s,Xs)〉dWs

=
〈
ζ,

∫ t

0

St−sσ(s,Xs)dWs

〉
−
∫ t

0

〈ζ, σ(s,Xs)〉dWs.

Therefore, and since X is a mild solution to (5.1), we obtain P–almost surely

〈ζ,Xt〉 =
〈
ζ, Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs

〉
= 〈ζ, Sth0〉+

〈
ζ,

∫ t

0

St−sα(s,Xs)ds
〉

+
〈
ζ,

∫ t

0

St−sσ(s,Xs)dWs

〉
= 〈ζ, h0〉+

∫ t

0

〈A∗ζ, Ssh0〉ds

+

∫ t

0

〈
A∗ζ,

∫ s

0

Ss−uα(u,Xu)du
〉
ds+

∫ t

0

〈ζ, α(s,Xs)〉ds

+

∫ t

0

〈
A∗ζ,

∫ s

0

Ss−uσ(u,Xu)dWu

〉
ds+

∫ t

0

〈ζ, σ(s,Xs)〉dWs,
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and hence

〈ζ,Xt〉 = 〈ζ, h0〉

+

∫ t

0

〈
A∗ζ, Ssh0 +

∫ s

0

Ss−uα(u,Xu)du+

∫ s

0

Ss−uσ(u,Xu)dWu︸ ︷︷ ︸
=Xs

〉
ds

+

∫ t

0

〈ζ, α(s,Xs)〉ds+

∫ t

0

〈ζ, σ(s,Xs)〉dWs

= 〈ζ, h0〉+

∫ t

0

(
〈A∗ζ,Xs〉+ 〈ζ, α(s,Xs)〉

)
ds+

∫ t

0

〈ζ, σ(s,Xs)〉dWs.

Consequently, the process X is also a weak solution to (5.1). �

Next, we provide conditions which ensure that a mild solution to (5.1) is also a
strong solution.

5.12. Proposition. Let X be a mild solution to (5.1) such that P–almost surely we
have

Xs, α(s,Xs) ∈ D(A) and σ(s,Xs) ∈ L0
2(D(A)) for all s ≥ 0,(5.7)

as well as

P
(∫ t

0

(
‖Xs‖D(A) + ‖α(s,Xs)‖D(A)

)
ds <∞

)
= 1 for all t ≥ 0,(5.8)

E
[ ∫ T

0

‖σ(s,Xs)‖2L0
2(D(A))ds

]
<∞ for all T ≥ 0.(5.9)

Then X is also a strong solution to (5.1).

Proof. By hypotheses (5.7) and (5.8) we have (5.2) and (5.3). Let t ≥ 0 be arbitrary.
By Lemma 3.10 we have

Sth0 − h0 =

∫ t

0

ASsh0ds.

Furthermore, by Lemma 3.10 and Fubini’s theorem for Bochner integrals (see [13,
Section 1.1, page 21]) we have P–almost surely∫ t

0

(
St−sα(s,Xs)− α(s,Xs)

)
ds =

∫ t

0

(∫ t−s

0

ASuα(s,Xs)du

)
ds

=

∫ t

0

(∫ t

u

ASs−uα(u,Xu)ds

)
du =

∫ t

0

(∫ s

0

ASs−uα(u,Xu)du

)
ds

=

∫ t

0

A

(∫ s

0

Ss−uα(u,Xu)du

)
ds.

Due to assumption (5.9), we may use Fubini’s theorem for stochastic integrals (see
[13, Theorem 2.8]), which, together with Lemma 3.10 gives us P–almost surely∫ t

0

(
St−sσ(s,Xs)− σ(s,Xs)

)
dWs =

∫ t

0

(∫ t−s

0

ASuσ(s,Xs)du

)
dWs

=

∫ t

0

(∫ t

u

ASs−uσ(u,Xu)ds

)
dWu =

∫ t

0

(∫ s

0

ASs−uσ(u,Xu)dWu

)
ds

=

∫ t

0

A

(∫ s

0

Ss−uσ(u,Xu)dWu

)
ds.
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Since X is a mild solution to (5.1), we have P–almost surely

Xt = Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs

= h0 +

∫ t

0

α(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

+ (Sth0 − h0) +

∫ t

0

(St−sα(s,Xs)− α(s,Xs))ds

+

∫ t

0

(St−sσ(s,Xs)− σ(s,Xs))dWs,

and hence, combining the latter identities, we obtain P–almost surely

Xt = h0 +

∫ t

0

α(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

+

∫ t

0

ASsh0ds+

∫ t

0

A

(∫ s

0

Ss−uα(u,Xu)du

)
ds

+

∫ t

0

A

(∫ s

0

Ss−uσ(u,Xu)dWu

)
ds,

which implies

Xt = h0 +

∫ t

0

α(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

+

∫ t

0

A

(
Ssh0 +

∫ s

0

Ss−uα(u,Xu)du+

∫ s

0

Ss−uσ(u,Xu)dWu

)
︸ ︷︷ ︸

=Xs

ds

= h0 +

∫ t

0

(
AXs + α(s,Xs)

)
ds+

∫ t

0

σ(s,Xs)dWs.

This proves that X is also a strong solution to (5.1). �

The following result shows that for norm continuous semigroups the concepts of
strong, weak and mild solutions are equivalent. In particular, this applies for finite
dimensional state spaces.

5.13. Proposition. Suppose the semigroup (St)t≥0 is norm continuous. Let X be
a stochastic process with X0 = h0. Then the following statements are equivalent:

(1) The process X is a strong solution to (5.1).
(2) The process X is a weak solution to (5.1).
(3) The process X is a mild solution to (5.1).

Proof. (1) ⇒ (2): This implication is a consequence of Proposition 5.3.
(2) ⇒ (3): This implication is a consequence of Proposition 5.9.
(3)⇒ (1): By Proposition 3.12 we have A ∈ L(H) and St = etA, t ≥ 0. Furthermore,
the family (etA)t∈R is a C0-group on H. Therefore, and since X is a mild solution
to (5.1), we have P–almost surely

Xt = etAh0 +

∫ t

0

e(t−s)Aα(s,Xs)ds+

∫ t

0

e(t−s)Aσ(s,Xs)dWs

= etAh0 + etA
∫ t

0

e−sAα(s,Xs)ds+ etA
∫ t

0

e−sAσ(s,Xs)dWs, t ≥ 0.
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Let Y be the Itô process

Yt :=

∫ t

0

e−sAα(s,Xs)ds+

∫ t

0

e−sAσ(s,Xs)dWs, t ≥ 0.

Then we have P–almost surely

Xt = etA(h0 + Yt), t ≥ 0,

and, by Lemma 3.10, we have

etAh0 − h0 =

∫ t

0

AesAh0 ds.

Defining the function

f : R+ ×H → H, f(s, y) := esAy,

by Lemma 3.10 we have f ∈ C1,2,loc
b (R+ ×H;H) with partial derivatives

Dsf(s, y) = AesAy,

Dyf(s, y) = esA,

Dyyf(s, y) = 0.

By Itô’s formula (Theorem 4.2) we get P–almost surely

etAYt = f(t, Yt) = f(0, 0) +

∫ t

0

(
Dsf(s, Ys) +Dyf(s, Ys)e

−sAα(s,Xs)
)
ds

+

∫ t

0

Dyf(s, Ys)e
−sAσ(s,Xs)dWs

=

∫ t

0

(
AesAYs + α(s,Xs)

)
ds+

∫ t

0

σ(s,Xs)dWs.

Combining the previous identities, we obtain P–almost surely

Xt = etA(h0 + Yt) = h0 + (etAh0 − h0) + etAYt

= h0 +

∫ t

0

AesAh0 ds+

∫ t

0

(
AesAYs + α(s,Xs)

)
ds+

∫ t

0

σ(s,Xs)dWs

= h0 +

∫ t

0

(
AesA(h0 + Ys)︸ ︷︷ ︸

=Xs

+α(s,Xs)
)
ds+

∫ t

0

σ(s,Xs)dWs

= h0 +

∫ t

0

(
AXs + α(s,Xs)

)
ds+

∫ t

0

σ(s,Xs)dWs, t ≥ 0,

proving that X is a strong solution to (5.1). �

6. Stochastic convolution integrals

In this section, we deal with the regularity of stochastic convolution integrals,
which occur when dealing with mild solutions to SPDEs of the type (5.1).

Let E be a separable Banach space and let (St)t≥0 be a C0-semigroup on E. We
start with the drift term.

6.1. Lemma. Let f : R+ → E be a measurable mapping such that∫ t

0

‖f(s)‖ds <∞ for all t ≥ 0.

Then the mapping

F : R+ → E, F (t) :=

∫ t

0

St−sf(s)ds
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is continuous.

Proof. Let t ∈ R+ be arbitrary. It suffices to prove that F is right-continuous and
left-continuous in t.

(1) Let (tn)n∈N ⊂ R+ be a sequence such that tn ↓ t. Then for every n ∈ N we
have

‖F (t)− F (tn)‖ =

∥∥∥∥ ∫ t

0

St−sf(s)ds−
∫ tn

0

Stn−sf(s)ds

∥∥∥∥
=

∥∥∥∥ ∫ t

0

St−sf(s)ds−
∫ t

0

Stn−sf(s)ds−
∫ tn

t

Stn−sf(s)ds

∥∥∥∥
≤
∫ t

0

‖St−sf(s)− Stn−sf(s)‖ds+

∫ tn

t

‖Stn−sf(s)‖ds.

By Lemma 3.4 the mapping

R+ × E → E, (u, x) 7→ Sux

is continuous. Thus, taking into account estimate (3.1) from Lemma 3.2,
by Lebesgue’s dominated convergence theorem we obtain

‖F (t)− F (tn)‖ → 0 for n→∞.

(2) Let (tn)n∈N ⊂ R+ be a sequence such that tn ↑ t. Then for every n ∈ N we
have

‖F (t)− F (tn)‖ =

∥∥∥∥∫ t

0

St−sf(s)ds−
∫ tn

0

Stn−sf(s)ds

∥∥∥∥
=

∥∥∥∥∫ tn

0

St−sf(s)ds−
∫ t

tn

St−sf(s)ds−
∫ tn

0

Stn−sf(s)ds

∥∥∥∥
≤
∫ tn

0

‖St−sf(s)− Stn−sf(s)‖ds+

∫ t

tn

‖St−sf(s)‖ds.

Proceeding as in the previous situation, by Lebesgue’s dominated conver-
gence theorem we obtain

‖F (t)− F (tn)‖ → 0 for n→∞.

This completes the proof. �

6.2. Proposition. Let X be a progressively measurable process satisfying

P
(∫ t

0

‖Xs‖ds <∞
)

= 1 for all t ≥ 0.

Then the process Y defined as

Yt :=

∫ t

0

St−sXsds, t ≥ 0

is continuous and adapted.

Proof. The continuity of Y is a consequence of Lemma 6.1. Moreover, Y is adapted,
because X is progressively measurable. �

Now, we shall deal with stochastic convolution integrals driven by Wiener pro-
cesses. Let H be a separable Hilbert space and let (St)t≥0 be a C0-semigroup on H.
Moreover, letW be a trace class Wiener process on some separable Hilbert space H.



STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 19

6.3. Definition. Let X be a L0
2(H)-valued predictable process such that

P
(∫ t

0

‖Xs‖2L0
2(H)ds <∞

)
= 1 for all t ≥ 0.

We define the stochastic convolution X ?W as

(X ?W )t :=

∫ t

0

St−sXsdWs, t ≥ 0.

We recall the following result concerning the regularity of stochastic convolutions.

6.4. Proposition. Let X be a L0
2(H)-valued predictable process such that one of

the following two conditions is satisfied:
(1) There exists a constant p > 1 such that

E
[ ∫ t

0

‖Xs‖2pL0
2(H)

ds

]
<∞ for all t ≥ 0.

(2) The semigroup (St)t≥0 is a semigroup of pseudo-contractions, and we have

E
[ ∫ t

0

‖Xs‖2L0
2(H)ds

]
<∞ for all t ≥ 0.

Then the stochastic convolution X ?W has a continuous version.

Proof. See [13, Lemma 3.3]. �

7. Existence- and uniqueness results for SPDEs

In this section, we will present results concerning existence and uniqueness of
solutions to the SPDE (5.1).

First, we recall the Banach fixed point theorem, which will be a basic result for
proving the existence of mild solutions to (5.1).

7.1. Definition. Let (E, d) be a metric space and let Φ : E → E be a mapping.
(1) The mapping Φ is called a contraction, if for some constant 0 ≤ L < 1 we

have

d(Φ(x),Φ(y)) ≤ L · d(x, y) for all x, y ∈ E.

(2) An element x ∈ E is called a fixed point of Φ, if we have

Φ(x) = x.

The following result is the well-known Banach fixed point theorem. Its proof can
be found, e.g., in [2, Theorem 3.48].

7.2. Theorem (Banach fixed point theorem). Let E be a complete metric space
and let Φ : E → E be a contraction. Then the mapping Φ has a unique fixed point.

In this text, we shall use the following slight extension of the Banach fixed point
theorem:

7.3. Corollary. Let E be a complete metric space and let Φ : E → E be a mapping
such that for some n ∈ N the mapping Φn is a contraction. Then the mapping Φ
has a unique fixed point.

Proof. According to the Banach fixed point theorem (Theorem 7.2) the mapping
Φn has a unique fixed point, that is, there exists a unique element x ∈ E such that
Φn(x) = x. Therefore, we have

Φ(x) = Φ(Φn(x)) = Φn(Φ(x)),
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showing that Φ(x) is a fixed point of Φn. Since Φn has a unique fixed point, we
deduce that Φ(x) = x, showing that x is a fixed point of Φ.

In order to prove uniqueness, let y ∈ E be another fixed point of Φ, that is, we
have Φ(y) = y. By induction, we obtain

Φn(y) = Φn−1(Φ(y)) = Φn−1(y) = . . . = Φ(y) = y,

showing that y is a fixed point of Φn. Since the mapping Φn has exactly one fixed
point, we obtain x = y. �

An indispensable tool for proving uniqueness of mild solutions to (5.1) will be
the following version of Gronwall’s inequality, see, e.g., [6, Theorem 5.1].

7.4. Lemma (Gronwall’s inequality). Let T ≥ 0 be fixed, let f : [0, T ] → R+ be a
nonnegative continuous mapping, and let β ≥ 0 be a constant such that

f(t) ≤ β
∫ t

0

f(s)ds for all t ∈ [0, T ].

Then we have f ≡ 0.

The following result shows that local Lipschitz continuity of α and σ ensures the
uniqueness of mild solutions to the SPDE (5.1).

7.5. Theorem. We suppose that for every n ∈ N there exists a constant Ln ≥ 0
such that

‖α(t, h1)− α(t, h2)‖ ≤ Ln‖h1 − h2‖,(7.1)
‖σ(t, h1)− σ(t, h2)‖L0

2(H) ≤ Ln‖h1 − h2‖(7.2)

for all t ≥ 0 and all h1, h2 ∈ H with ‖h1‖, ‖h2‖ ≤ n. Let h0, g0 : Ω→ H be two F0-
measurable random variables, let τ > 0 be a strictly positive stopping time, and let
X,Y be two local mild solutions to (5.1) with initial conditions h0, g0 and lifetime
τ . Then we have up to indistinguishability1

Xτ
1{h0=g0} = Y τ1{h0=g0}.

Proof. Defining the stopping times (τn)n∈N as

τn := τ ∧ inf{t ≥ 0 : ‖Xt‖ ≥ n} ∧ inf{t ≥ 0 : ‖Yt‖ ≥ n},

we have P(τn → τ) = 1. Let n ∈ N and T ≥ 0 be arbitrary, and set

Γ := {h0 = g0} ∈ F0.

The mapping

f : [0, T ]→ R, f(t) := E
[
1Γ‖Xt∧τn − Yt∧τn‖2

]

1Two processes X and Y are called indistinguishable if the set {ω ∈ Ω : Xt(ω) 6=
Yt(ω) for some t ∈ R+} is a P–nullset.
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is nonnegative, and it is continuous by Lebesgue’s dominated convergence theorem.
For all t ∈ [0, T ] we have

f(t) = E
[
1Γ‖Xt∧τn − Yt∧τn‖2

]
≤ 3E

[
1Γ‖St∧τn(h0 − g0)‖2

]︸ ︷︷ ︸
=0

+ 3E

[
1Γ

∥∥∥∥∫ t∧τn

0

S(t∧τn)−s
(
α(s,Xs)− α(s, Ys)

)
ds

∥∥∥∥2
]

+ 3E

[
1Γ

∥∥∥∥∫ t∧τn

0

S(t∧τn)−s
(
σ(s,Xs)− σ(s, Ys)

)
dWs

∥∥∥∥2
]

= 3E

[∥∥∥∥∫ t∧τn

0

1ΓS(t∧τn)−s
(
α(s,Xs)− α(s, Ys)

)
ds

∥∥∥∥2
]

+ 3E

[∥∥∥∥∫ t∧τn

0

1ΓS(t∧τn)−s
(
σ(s,Xs)− σ(s, Ys)

)
dWs

∥∥∥∥2
]
,

and hence, by the Cauchy-Schwarz inequality, the Itô isometry (4.2), the growth
estimate (3.1) from Lemma 3.2 and the local Lipschitz conditions (7.1), (7.2) we
obtain

f(t) ≤ 3TE
[ ∫ t∧τn

0

∥∥1ΓS(t∧τn)−s
(
α(s,Xs)− α(s, Ys)

)∥∥2
ds

]
+ 3E

[ ∫ t∧τn

0

∥∥1ΓS(t∧τn)−s
(
σ(s,Xs)− σ(s, Ys)

)∥∥2

L0
2(H)

ds

]
≤ 3T

(
MeωT

)2E[ ∫ t∧τn

0

1Γ‖α(s,Xs)− α(s, Ys)‖2ds
]

+ 3
(
MeωT

)2E[ ∫ t∧τn

0

1Γ‖σ(s,Xs)− σ(s, Ys)‖2L0
2(H)ds

]
≤ 3(T + 1)

(
MeωT

)2
L2
n

∫ t

0

E
[
1Γ‖Xs∧τn − Ys∧τn‖2

]
ds

= 3(T + 1)
(
MeωT

)2
L2
n

∫ t

0

f(s)ds.

Using Gronwall’s inequality (see Lemma 7.4) we deduce that f ≡ 0. Thus, by the
continuity of the sample paths of X and Y , we obtain

P
(⋂
t≥0

{Xt∧τn1Γ = Yt∧τn1Γ}
)

= 1 for all n ∈ N,

and hence, by the continuity of the probability measure P, we conclude that

P
(⋂
t≥0

{Xt∧τ1Γ = Yt∧τ1Γ}
)

= P
( ⋂
n∈N

⋂
t≥0

{Xt∧τn1Γ = Yt∧τn1Γ}
)

= lim
n→∞

P
(⋂
t≥0

{Xt∧τn1Γ = Yt∧τn1Γ}
)

= 1,

which completes the proof. �

The local Lipschitz conditions (7.1), (7.2) are, in general, not sufficient in order
to ensure the existence of mild solutions to the SPDE (5.1). Now, we will prove
that the existence of mild solutions follows from global Lipschitz and linear growth
conditions on α and σ. For this, we recall an auxiliary result which extends the Itô
isometry (4.2).
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7.6. Lemma. Let T ≥ 0 be arbitrary and let X = (Xt)t∈[0,T ] be a L0
2(H)-valued,

predictable process such that

E
[ ∫ T

0

‖Xs‖2L0
2(H)ds

]
<∞.

Then, for every p ≥ 1 we have

E

[∥∥∥∥∫ T

0

XsdWs

∥∥∥∥2p
]
≤ CpE

[ ∫ T

0

‖Xs‖2L0
2(H)ds

]p
,

where the constant Cp > 0 is given by

Cp =
(
p(2p− 1)

)p( 2p

2p− 1

)2p2

.

Proof. See [13, Lemma 3.1]. �

7.7. Theorem. Suppose there exists a constant L ≥ 0 such that

‖α(t, h1)− α(t, h2)‖ ≤ L‖h1 − h2‖,(7.3)
‖σ(t, h1)− σ(t, h2)‖L0

2(H) ≤ L‖h1 − h2‖(7.4)

for all t ≥ 0 and all h1, h2 ∈ H, and suppose there exists a constant K ≥ 0 such
that

‖α(t, h)‖ ≤ K(1 + ‖h‖),(7.5)
‖σ(t, h)‖L0

2(H) ≤ K(1 + ‖h‖)(7.6)

for all t ≥ 0 and all h ∈ H. Then, for every F0-measurable random variable h0 :
Ω→ H there exists a (up to indistinguishability) unique mild solution X to (5.1).

Proof. The uniqueness of mild solutions to (5.1) is a direct consequence of Theo-
rem 7.5, and hence, we may concentrate on the existence proof, which we divide
into several steps:
Step 1: First, we suppose that the initial condition h0 satisfies E[‖h0‖2p] < ∞ for
some p > 1. Let T ≥ 0 be arbitrary. We define the Banach space

L2p
T (H) := L2p(Ω× [0, T ],PT ,P⊗ dt;H)

and prove that the variation of constants equation

Xt = Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs, t ∈ [0, T ](7.7)

has a unique solution in the space L2p
T (H). This is done in the following three steps:

Step 1A: For X ∈ L2p
T (H) we define the process ΦX by

(ΦX)t = Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs, t ∈ [0, T ].

Then the process ΦX is well-defined. Indeed, by the growth estimate (3.1), the
linear growth condition (7.5) and Hölder’s inequality we have

E
[ ∫ T

0

‖St−sα(s,Xs)‖ds
]
≤MeωTE

[ ∫ T

0

‖α(s,Xs)‖ds
]

≤MeωTKE
[ ∫ T

0

(1 + ‖Xs‖)ds
]

= MeωTK

(
T + E

[ ∫ T

0

‖Xs‖ds
])

≤MeωTK

(
T + T 1− 1

2pE
[ ∫ T

0

‖Xs‖2pds
]1/2p)

<∞.
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Furthermore, by the growth estimate (3.1), the linear growth condition (7.6) and
Hölder’s inequality we have

E
[ ∫ T

0

‖St−sσ(s,Xs)‖2L0
2(H)ds

]
≤
(
MeωT

)2E[ ∫ T

0

‖σ(s,Xs)‖2L0
2(H)ds

]
≤
(
MeωTK

)2E[ ∫ T

0

(1 + ‖Xs‖)2ds

]
≤ 2
(
MeωTK

)2E[ ∫ T

0

(1 + ‖Xs‖2)ds

]
= 2
(
MeωTK

)2(
T + E

[ ∫ T

0

‖Xs‖2ds
])

≤ 2
(
MeωTK

)2(
T + T 1− 1

pE
[ ∫ T

0

‖Xs‖2p
]1/p)

<∞.

The previous two estimates show that Φ is a well-defined mapping on L2p
T (H).

Step 1B: Next, we show that the mapping Φ maps L2p
T (H) into itself, that is, we

have Φ : L2p
T (H) → L2p

T (H). Indeed, let X ∈ L2p
T (H) be arbitrary. Defining the

process ΦαX and ΦσX as

(ΦαX)t :=

∫ t

0

St−sα(s,Xs)ds, t ∈ [0, T ],

(ΦσX)t :=

∫ t

0

St−sσ(s,Xs)dWs, t ∈ [0, T ],

we have

(ΦX)t = Sth0 + (ΦαX)t + (ΦσX)t, t ∈ [0, T ].

By the growth estimate (3.1) we have

E
[ ∫ T

0

‖Sth0‖2pdt
]
≤
(
MeωT

)2p
TE
[
‖h0‖2p

]
<∞.

By Hölder’s inequality and the growth estimate (3.1) we have

E
[ ∫ T

0

‖(ΦαX)t‖2pdt
]

= E
[ ∫ T

0

∥∥∥∥ ∫ t

0

St−sα(s,Xs)ds

∥∥∥∥2p

dt

]
≤ t2p−1E

[ ∫ T

0

∫ t

0

‖St−sα(s,Xs)‖2pdsdt
]

≤ T 2p−1
(
MeωT

)2pE[ ∫ T

0

∫ t

0

‖α(s,Xs)‖2pdsdt
]
,

and hence, by the linear growth condition (7.5) and Hölder’s inequality we obtain

E
[ ∫ T

0

‖(ΦαX)t‖2pdt
]
≤ T 2p−1

(
MeωTK

)2pE[ ∫ T

0

∫ t

0

(1 + ‖Xs‖)2pdsdt

]
≤ T 2p−1

(
MeωTK

)2p
22p−1E

[ ∫ T

0

∫ t

0

(1 + ‖Xs‖2p)dsdt
]

≤ (2T )2p−1
(
MeωTK

)2p(T 2

2
+ TE

[ ∫ T

0

‖Xs‖2pds
])

<∞.



24 STEFAN TAPPE

Furthermore, by Lemma 7.6 and the growth estimate (3.1) we have

E
[ ∫ T

0

‖(ΦσX)t‖2pdt
]

= E
[ ∫ T

0

∥∥∥∥∫ t

0

St−sσ(s,Xs)dWs

∥∥∥∥2p

dt

]
=

∫ T

0

E

[∥∥∥∥∫ t

0

St−sσ(s,Xs)dWs

∥∥∥∥2p
]
dt

≤ Cp
∫ T

0

E
[ ∫ t

0

‖St−sσ(s,Xs)‖2L0
2(H)ds

]p
dt

≤ Cp
(
MeωT

)2p ∫ T

0

E
[ ∫ t

0

‖σ(s,Xs)‖2L0
2(H)ds

]p
dt

and hence, by the linear growth condition (7.6) and Hölder’s inequality we obtain

E
[ ∫ T

0

‖(ΦσX)t‖2pdt
]
≤ Cp

(
MeωT

)2p
tp−1E

[ ∫ T

0

∫ t

0

‖σ(s,Xs)‖2pL0
2(H)

dsdt

]
≤ Cp

(
MeωTK

)2p
T p−1E

[ ∫ T

0

∫ t

0

(1 + ‖Xs‖)2pdsdt

]
≤ Cp

(
MeωTK

)2p
T p−122p−1E

[ ∫ T

0

∫ t

0

(1 + ‖Xs‖2p)dsdt
]

≤ Cp
(
MeωTK

)2p
2p(2T )p−1

(
T 2

2
+ TE

[ ∫ T

0

‖Xs‖2pds
])

<∞.

The previous three estimates show that ΦX ∈ L2p(H). Consequently, the mapping
Φ maps L2p

T (H) into itself.
Step 1C: Now, we show that for some index n ∈ N the mapping Φn is a contraction
on L2p

T (H). Let X,Y ∈ L2p
T (H) and t ∈ [0, T ] be arbitrary. By Hölder’s inequality,

the growth estimate (3.1) and the Lipschitz condition (7.3) we have

E
[
‖(ΦαX)t − (ΦαY )t‖2p

]
= E

[∥∥∥∥∫ t

0

St−sα(s,Xs)ds−
∫ t

0

St−sα(s, Ys)ds

∥∥∥∥2p
]

= E

[∥∥∥∥∫ t

0

St−s
(
α(s,Xs)− α(s, Ys)

)
ds

∥∥∥∥2p
]

≤ t2p−1E
[ ∫ t

0

∥∥St−s(α(s,Xs)− α(s, Ys)
)∥∥2p

ds

]
≤ T 2p−1

(
MeωT

)2pE[ ∫ t

0

‖α(s,Xs)− α(s, Ys)‖2pds
]

≤ T 2p−1
(
MeωTL

)2p ∫ t

0

E
[
‖Xs − Ys‖2p

]
ds.
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Furthermore, by Lemma 7.6, the growth estimate (3.1), the Lipschitz condition
(7.4) and Hölder’s inequality we obtain

E
[
‖(ΦσX)t − (ΦσY )t‖2p

]
= E

[∥∥∥∥∫ t

0

St−sσ(s,Xs)dWs −
∫ t

0

St−sσ(s, Ys)dWs

∥∥∥∥2p
]

= E

[∥∥∥∥∫ t

0

St−s
(
σ(s,Xs)− σ(s, Ys)

)
dWs

∥∥∥∥2p
]

≤ CpE
[ ∫ t

0

∥∥St−s(σ(s,Xs)− σ(s, Ys)
)∥∥2

L0
2(H)

ds

]p
≤ Cp

(
MeωT

)2pE[∫ t

0

‖σ(s,Xs)− σ(s, Ys)‖2L0
2(H)ds

]p

≤ Cp
(
MeωTL

)2p ∫ t

0

E
[
‖Xs − Ys‖2p

]
ds.

Therefore, defining the constant

C := 22p−1
(
T 2p−1

(
MeωTL

)2p
+ Cp

(
MeωTL

)2p)
,

by Hölder’s inequality we get

E
[
‖(ΦX)t − (ΦY )t‖2p

]
≤ 22p−1

(
E
[
‖(ΦαX)t − (ΦαY )t‖2p

]
+ E

[
‖(ΦσX)t − (ΦσY )t‖2p

])
≤ C

∫ t

0

E
[
‖Xs − Ys‖2p

]
ds.

Thus, by induction for every n ∈ N we obtain

‖ΦnX − ΦnY ‖L2p
T (H) =

(∫ T

0

E
[
‖(ΦnX)t1 − (ΦnY )t1‖2p

]
dt1

)1/2p

≤
(
C

∫ T

0

(∫ t1

0

E
[
‖(Φn−1X)t2 − (Φn−1Y )t2‖2p

]
dt2

)
dt1

)1/2p

≤ . . . ≤
(
Cn
∫ T

0

∫ t1

0

· · ·
∫ tn−1

0

(∫ tn

0

E
[
‖Xs − Ys‖2p

]
ds

)
dtn . . . dt2dt1

)1/2p

≤
(
Cn
(∫ T

0

∫ t1

0

· · ·
∫ tn−1

0

1dtn . . . dt2dt1

)
︸ ︷︷ ︸

= Tn

n!

E
[ ∫ T

0

‖Xs − Ys‖2pds
])1/2p

=

(
(CT )n

n!

)1/2p

︸ ︷︷ ︸
→0 for n→∞

‖X − Y ‖L2p
T (H).

Consequently, there exists an index n ∈ N such that Φn is a contraction, and hence,
according to the extension of the Banach fixed point theorem (see Corollary 7.3) the
mapping Φ has a unique fixed point X ∈ L2p

T (H). This fixed point X is a solution
to the variation of constants equation (7.7). Since T ≥ 0 was arbitrary, there exists
a process X which is a solution of the variation of constants equation

Xt = Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs, t ≥ 0.
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Step 1D: In order to prove that X is a mild solution to (5.1), it remains to show
that X has a continuous version. By Lemma 3.4, the process

t 7→ Sth0, t ≥ 0

is continuous, and, by Proposition 6.2, the process∫ t

0

St−sα(s,Xs)ds, t ≥ 0

is continuous, too. Moreover, for every T ≥ 0 we have, by the linear growth condition
(7.6), Hölder’s inequality, and since X ∈ L2p

T (H), the estimate

E
[ ∫ T

0

‖σ(s,Xs)‖2pL0
2(H)

ds

]
≤ K2pE

[ ∫ T

0

(1 + ‖Xs‖)2pds

]
≤ K2p22p−1E

[ ∫ T

0

(1 + ‖Xs‖2p)ds
]

= K(2K)2p−1

(
T + E

[ ∫ T

0

‖Xs‖2pds
])

<∞.

Thus, by Proposition 6.4 the stochastic convolution σ ?W given by

(σ ?W )t =

∫ t

0

St−sσ(s,Xs)dWs, t ≥ 0

has a continuous version, and consequently, the process X has a continuous version,
too. This continuous version is a mild solution to (5.1).
Step 2: Now let h0 : Ω → H be an arbitrary F0-measurable random variable. We
define the sequence (hn)n∈N of F0-measurable random variables as

hn0 := h01{‖h0‖≤n}, n ∈ N.

Let n ∈ N be arbitrary. Then, as hn0 is bounded, we have E[‖hn0‖2p] < ∞ for all
p > 1. By Step 1 the SPDE{

dXn
t = (AXn

t + α(t,Xn
t ))dt+ σ(t,Xn

t )dWt

Xn
0 = hn0

has a mild solution Xn. We define the sequence (Ωn)n∈N ⊂ F0 as

Ωn := {‖h0‖ ≤ n}, n ∈ N.

Then we have Ωn ⊂ Ωm for n ≤ m, we have Ω =
⋃
n∈N Ωn and we have

Ωn ⊂ {hn0 = hm0 } ⊂ {hn0 = h0} for all n ≤ m.

Thus, by Theorem 7.5 we have (up to indistinguishability)

Xn
1Ωn = Xm

1Ωn for all n ≤ m.

Consequently, the process

X := lim
n→∞

Xn
1Ωn

is a well-defined, continuous and adapted process, and we have

Xn
1Ωn

= Xm
1Ωn

= X1Ωn
for all n ≤ m.
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Furthermore, we obtain P–almost surely

Xt = lim
n→∞

Xn
t 1Ωn

= lim
n→∞

1Ωn

(
Sth

n
0 +

∫ t

0

St−sα(s,Xn
s )ds+

∫ t

0

St−sσ(s,Xn
s )dWs

)
= lim
n→∞

(
St(1Ωn

hn0 ) +

∫ t

0

1Ωn
St−sα(s,Xn

s )ds+

∫ t

0

1Ωn
St−sσ(s,Xn

s )dWs

)
= lim
n→∞

(
St(1Ωnh0) +

∫ t

0

1ΩnSt−sα(s,Xs)ds+

∫ t

0

1ΩnSt−sσ(s,Xs)dWs

)
= lim
n→∞

1Ωn

(
Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs

)
= Sth0 +

∫ t

0

St−sα(s,Xs)ds+

∫ t

0

St−sσ(s,Xs)dWs, t ≥ 0,

proving that X is a mild solution to (5.1). �

7.8. Remark. For the proof of Theorem 7.7 we have used Corollary 7.3, which is a
slight extension of the Banach fixed point theorem. Such an idea has been applied,
e.g., in [14].

7.9. Remark. A recent method for proving existence and uniqueness of mild so-
lutions to the SPDE (5.1) is the “method of the moving frame” presented in [9],
see also [23]. It allows to reduce SPDE problems to the study of SDEs in infinite
dimension. In order to apply this method, we need that the semigroup (St)t≥0 is a
semigroup of pseudo-contractions.

We close this section with a consequence about the existence of weak solutions.

7.10. Corollary. Suppose that conditions (7.3)–(7.6) are fulfilled. Let h0 : Ω→ H
be a F0-measurable random variable such that E[‖h0‖2p] <∞ for some p > 1. Then
there exists a (up to indistinguishability) unique weak solution X to (5.1).

Proof. According to Proposition 5.9, every weak solution X to (5.1) is also a mild
solution to (5.1). Therefore, the uniqueness of weak solutions to (5.1) is a conse-
quence of Theorem 7.5.

It remains to prove the existence of a weak solution to (5.1). Let T ≥ 0 be
arbitrary. By Theorem 7.7 and its proof there exists a mild solution X ∈ L2p

T (H)
to (5.1). By the linear growth condition (7.6) and Hölder’s inequality we obtain

E
[ ∫ T

0

‖σ(s,Xs)‖2L0
2(H)

]
≤ K2E

[ ∫ T

0

(1 + ‖Xs‖)2ds

]
≤ 2K2E

[ ∫ T

0

(1 + ‖Xs‖2)ds

]
= 2K2

(
T + E

[ ∫ T

0

‖Xs‖2ds
])
≤ 2K2

(
T + T 1− 1

pE
[ ∫ T

0

‖Xs‖2pds
]1/p)

<∞,

showing that condition (5.6) is fulfilled. Thus, by Proposition 5.11 the process X
is also a weak solution to (5.1). �

8. Invariant manifolds for weak solutions to SPDEs

In this section, we deal with invariant manifolds for time-homogeneous SPDEs
of the type (5.1). This topic arises from the natural desire to express the solutions
of the SPDE (5.1), which generally live in the infinite dimensional Hilbert space H,
by means of a finite dimensional state process, and thus, to ensure larger analytical
tractability. Our goal is to find conditions on the generator A and the coefficients α,
σ such that for every starting point of a finite dimensional submanifold the solution
process stays on the submanifold.
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We start with the required preliminaries about finite dimensional submanifolds
in Hilbert spaces. In the sequel, let H be a separable Hilbert space.

8.1. Definition. Let m, k ∈ N be positive integers. A subset M ⊂ H is called
a m-dimensional Ck-submanifold of H, if for every h ∈ M there exist an open
neighborhood U ⊂ H of h, an open set V ⊂ Rm and a mapping φ ∈ C2(V ;H) such
that:

(1) The mapping φ : V → U ∩M is a homeomorphism.
(2) For all y ∈ V the mapping Dφ(y) is injective.

The mapping φ is called a parametrization ofM around h.

In what follows, letM be a m-dimensional Ck-submanifold of H.

8.2. Lemma. Let φi : Vi → Ui ∩M, i = 1, 2 be two parametrizations with W :=
U1 ∩ U2 ∩M 6= ∅. Then the mapping

φ−1
1 ◦ φ2 : φ−1

2 (W )→ φ−1
1 (W )

is a Ck-diffeomorphism.

Proof. See [8, Lemma 6.1.1]. �

8.3. Corollary. Let h ∈ M be arbitrary and let φi : Vi → Ui ∩M, i = 1, 2 be two
parametrizations ofM around h. Then we have

Dφ1(y1)(Rm) = Dφ2(y2)(Rm),

where yi = φ−1
i (h) for i = 1, 2.

Proof. Since U1 and U2 are open neighborhoods of h, we haveW := U1∩U2∩M 6= ∅.
Thus, by Lemma 8.2 the mapping

φ−1
1 ◦ φ2 : φ−1

2 (W )→ φ−1
1 (W )

is a Ck-diffeomorphism. Using the chain rule, we obtain

Dφ2(y2)(Rm) = D(φ1 ◦ (φ−1
1 ◦ φ2))(y2)(Rm) = Dφ1(y1)D(φ−1

1 ◦ φ2)(y2)(Rm)

⊂ Dφ1(y1)(Rm),

and, analogously, we prove that Dφ1(y1)(Rm) ⊂ Dφ2(y2)(Rm). �

8.4. Definition. Let h ∈ M be arbitrary. The tangent space of M to h is the
subspace

ThM := Dφ(y)(Rm),

where y = φ−1(h) and φ : V → U ∩M denotes a parametrization ofM around h.

8.5. Remark. Note that, according to Corollary 8.3, the Definition 8.4 of the tan-
gent space ThM does not depend on the choice of the parametrization φ : V →
U ∩M.

8.6.Proposition. Let h ∈M be arbitrary, and let φ : V → U∩M be a parametriza-
tion of M around h. Then there exist an open set V0 ⊂ V , an open neighbor-
hood U0 ⊂ U of h, and a mapping φ̂ ∈ Ckb (Rm;H) with φ|V0

= φ̂|V0
such that

φ|V0 : V0 → U0 ∩M is a parametrization ofM around h, too.

Proof. See [8, Remark 6.1.1]. �

8.7. Remark. By Proposition 8.6 we may assume that any parametrization φ :
V → U ∩M has an extension φ ∈ Ckb (Rm;H).
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8.8. Proposition. Let D ⊂ H be a dense subset. For every h0 ∈ M there exist
ζ1, . . . , ζm ∈ D and a parametrization φ : V → U ∩M around h0 such that

φ(〈ζ, h〉) = h for all h ∈ U ∩M,

where we use the notation 〈ζ, h〉 := (〈ζ1, h〉, . . . , 〈ζm, h〉) ∈ Rm.

Proof. See [8, Proposition 6.1.2]. �

8.9. Proposition. Let φ : V → U ∩M be a parametrization as in Proposition 8.8.
Then the following statements are true:

(1) The elements ζ1, . . . , ζm are linearly independent in H.
(2) For every h ∈ U ∩M we have the direct sum decomposition

H = ThM⊕ 〈ζ1, . . . , ζm〉⊥.(8.1)

(3) For every h ∈ U ∩M the mapping

Πh = Dφ(y)(〈ζ, •〉) : H → ThM, where y = 〈ζ, h〉,

is the corresponding projection according to (8.1) from H onto ThM, that
is, we have

Πh ∈ L(H), Π2
h = Πh, ran(Πh) = ThM and ker(Πh) = 〈ζ1, . . . , ζm〉⊥.

Proof. See [8, Lemma 6.1.3]. �

From now on, we assume thatM is a m-dimensional C2-submanifold of H.

8.10. Proposition. Let φ : V → U ∩M be a parametrization as in Proposition 8.8.
Furthermore, let σ ∈ C1(H) be a mapping such that

σ(h) ∈ ThM for all h ∈ U ∩M.(8.2)

Then, for every h ∈ U ∩M the direct sum decomposition of Dσ(h)σ(h) according
to (8.1) is given by

Dσ(h)σ(h) = Dφ(y)(〈ζ,Dσ(h)σ(h)〉) +D2φ(y)(〈ζ, σ(h)〉, 〈ζ, σ(h)〉),(8.3)

where y = φ−1(h).

Proof. Since V is an open subset of Rm, there exists ε > 0 such that

y + tDφ(y)−1σ(h) ∈ V for all t ∈ (−ε, ε).

Therefore, the curve

c : (−ε, ε)→ U ∩M, c(t) := φ(y + tDφ(y)−1σ(h))

is well-defined, and we have c ∈ C1((−ε, ε);H) with c(0) = h and c′(0) = σ(h).
Hence, we have

d

dt
σ(c(t))|t=0 = Dσ(h)σ(h).

Moreover, by condition (8.2) and Proposition 8.9 we have

d

dt
σ(c(t))|t=0 =

d

dt
Πc(t)σ(c(t))|t=0 =

d

dt
Dφ(〈ζ, c(t)〉)(〈ζ, σ(c(t))〉)|t=0

= Dφ(y)(〈ζ,Dσ(h)σ(h)〉) +D2φ(y)(〈ζ, σ(h)〉, 〈ζ, σ(h)〉).

The latter two identities prove the desired decomposition (8.3). �
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After these preliminaries, we shall study invariant manifolds for time-homogeneous
SPDEs of the form{

dXt = (AXt + α(Xt))dt+ σ(Xt)dWt

X0 = h0

(8.4)

with measurable mappings α : H → H and σ : H → L0
2(H). As in the previous

sections, the operator A is the infinitesimal generator of a C0-semigroup (St)t≥0 on
H. Note that, by (4.3), the SPDE (8.4) can be rewritten equivalently as{

dXt = (AXt + α(Xt))dt+
∑
j∈N σ

j(Xt)dβ
j
t

X0 = h0,
(8.5)

where (βj)j∈N denotes the sequence of real-valued independent standard Wiener
processes defined in (4.1), and where the mappings σj : H → H, j ∈ N are given
by σj =

√
λjσej .

For the rest of this section, we assume that there exist a constant L ≥ 0 such
that

‖α(h1)− α(h2)‖ ≤ L‖h1 − h2‖, h1, h2 ∈ H(8.6)

and a sequence (κj)j∈N ⊂ R+ with
∑
j∈N κ

2
j <∞ such that for every j ∈ N we have

‖σj(h1)− σj(h2)‖ ≤ κj‖h1 − h2‖, h1, h2 ∈ H(8.7)

‖σj(h)‖ ≤ κj(1 + ‖h‖), h ∈ H.(8.8)

8.11. Proposition. For every h0 ∈ H there exists a (up to indistinguishability)
unique weak solution to (8.5).

Proof. By (8.7), for all h1, h2 ∈ H we have

‖σ(h1)− σ(h2)‖L0
2(H) =

(∑
j∈N
‖σj(h1)− σj(h2)‖2

)1/2

≤
(∑
j∈N

κ2
j

)1/2

‖h1 − h2‖.

Moreover, by (8.6), for every h ∈ H we have

‖α(h)‖ ≤ ‖α(h)− α(0)‖+ ‖α(0)‖ ≤ L‖h‖+ ‖α(0)‖ ≤ max{L, ‖α(0)‖}(1 + ‖h‖),
and, by (8.8) we obtain

‖σ(h)‖L0
2(H) =

(∑
j∈N
‖σj(h)‖2

)1/2

≤
(∑
j∈N

κ2
j

)1/2

(1 + ‖h‖).

Therefore, conditions (7.3)–(7.6) are fulfilled, and hence, applying Corollary 7.10
completes the proof. �

Recall thatM denotes a finite dimensional C2-submanifold of H.

8.12. Definition. The submanifold M is called locally invariant for (8.5), if for
every h0 ∈M there exists a local weak solution X to (8.5) with some lifetime τ > 0
such that

Xt∧τ ∈M for all t ≥ 0, P–almost surely.

In order to investigate local invariance ofM, we will assume, from now on, that
σj ∈ C1(H) for all j ∈ N.

8.13. Lemma. The following statements are true:
(1) For every h ∈ H we have∑

j∈N
‖Dσj(h)σj(h)‖ <∞.(8.9)
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(2) The mapping

H → H, h 7→
∑
j∈N

Dσj(h)σj(h)(8.10)

is continuous.

Proof. By (8.7) and (8.8), for every h ∈ H we have∑
j∈N
‖Dσj(h)σj(h)‖ ≤

∑
j∈N
‖Dσj(h)‖ ‖σj(h)‖ ≤ (1 + ‖h‖)

∑
j∈N

κ2
j <∞,

showing (8.9). Moreover, for every j ∈ N the mapping

H 7→ H, Dσj(h)σj(h)

is continuous, because for all h1, h2 ∈ H we have

‖Dσj(h1)σj(h1)−Dσj(h2)σj(h2)‖
≤ ‖Dσj(h1)σj(h1)−Dσj(h1)σj(h2)‖+ ‖Dσj(h1)σj(h2)−Dσj(h2)σj(h2)‖
≤ ‖Dσj(h1)‖ ‖σj(h1)− σj(h2)‖+ ‖Dσj(h1)−Dσj(h2)‖ ‖σj(h2)‖.

Let ν be the counting measure on (N,P(N)), which is given by ν({j}) = 1 for all
j ∈ N. Then we have∑

j∈N
Dσj(h)σj(h) =

∫
N
Dσj(h)σj(h)ν(dj).

Hence, because of the estimate

‖Dσj(h)σj(h)‖ ≤ (1 + ‖h‖)κ2
j , h ∈ H and j ∈ N

the continuity of the mapping (8.10) is a consequence of Lebesgue’s dominated
convergence theorem. �

For a mapping φ ∈ C2
b (Rm;H) and elements ζ1, . . . , ζm ∈ D(A∗) we define the

mappings αφ,ζ : Rm → Rm and σjφ,ζ : Rm → Rm, j ∈ N as

αφ,ζ(y) := 〈A∗ζ, φ(y)〉+ 〈ζ, α(φ(y))〉,

σjφ,ζ(y) := 〈ζ, σj(φ(y))〉.

8.14. Proposition. Let φ ∈ C2
b (Rm;H) and ζ1, . . . , ζm ∈ D(A∗) be arbitrary. Then,

for every y0 ∈ Rm there exists a (up to indistinguishability) unique strong solution
to the SDE {

dYt = αφ,ζ(Yt)dt+
∑
j∈N σ

j
φ,ζ(Yt)dβ

j
t

Y0 = y0.
(8.11)

Proof. By virtue of the assumption φ ∈ C2
b (Rm;H) and (8.6)–(8.8), there exist a

constant L̃ ≥ 0 such that

‖αφ,ζ(y1)− αφ,ζ(y2)‖Rm ≤ L̃‖y1 − y2‖Rm , y1, y2 ∈ Rm

and a sequence (κ̃j)j∈N ⊂ R+ with
∑
j∈N κ̃

2
j <∞ such that for every j ∈ N we have

‖σjφ,ζ(y1)− σjφ,ζ(y2)‖Rm ≤ κ̃j‖y1 − y2‖Rm , y1, y2 ∈ Rm

‖σjφ,ζ(y)‖Rm ≤ κ̃j(1 + ‖y‖Rm), y ∈ Rm.

Therefore, by Proposition 8.11, for every y0 ∈ Rm there exists a (up to indistin-
guishability) unique weak solution to (8.11), which, according to Proposition 5.13
is also a strong solution to (8.11). The uniqueness of strong solutions to (8.11) is a
consequence of Proposition 5.13 and Theorem 7.5. �
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Now, we are ready to formulate and prove our main result of this section.

8.15. Theorem. The following statements are equivalent:

(1) The submanifoldM is locally invariant for (8.5).
(2) We have

M⊂ D(A),(8.12)

σj(h) ∈ ThM for all h ∈M and all j ∈ N,(8.13)

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h) ∈ ThM for all h ∈M.(8.14)

(3) The operator A is continuous on M, and for each h0 ∈ M there exists a
local strong solution X to (8.5) with some lifetime τ > 0 such that

Xt∧τ ∈M for all t ≥ 0, P–almost surely.

Proof. (1) ⇒ (2): Let h ∈ M be arbitrary. By Proposition 8.8 and Remark 8.7
there exist elements ζ1, . . . , ζm ∈ D(A∗) and a parametrization φ : V → U ∩M
around h such that the inverse φ−1 : U ∩M → V is given by φ−1 = 〈ζ, •〉, and
φ has an extension φ ∈ C2

b (Rm;H). Since the submanifold M is locally invariant
for (8.5), there exists a local weak solution X to (8.5) with initial condition h and
some lifetime % > 0 such that

Xt∧% ∈M for all t ≥ 0, P–almost surely.

Since U is an open neighborhood of h, there exists ε > 0 such that Bε(h) ⊂ U ,
where Bε(h) denotes the open ball

Bε(h) = {g ∈ H : ‖g − h‖ < ε}.

We define the stopping time

τ := % ∧ inf{t ≥ 0 : Xt /∈ Bε(h)}.

Since the process X has continuous sample paths and satisfies X0 = h, we have
τ > 0 and P–almost surely

Xt∧τ ∈ U ∩M for all t ≥ 0.

Defining the Rm-valued process Y := 〈ζ,X〉 we have P–almost surely

Yt∧τ ∈ V for all t ≥ 0.

Moreover, since X is a weak solution to (8.5) with initial condition h, setting y :=
〈ζ, h〉 ∈ V we have P–almost surely

Yt∧τ = 〈ζ, h〉+

∫ t∧τ

0

(
〈A∗ζ,Xs〉+ 〈ζ, α(Xs)〉

)
ds+

∑
j∈N

∫ t∧τ

0

〈ζ, σj(Xs)〉dβjs

= 〈ζ, h〉+

∫ t∧τ

0

αφ,ζ(〈ζ,Xs〉)ds+
∑
j∈N

∫ t∧τ

0

σjφ,ζ(〈ζ,Xs〉)dβjs

= y +

∫ t∧τ

0

αφ,ζ(Ys)ds+
∑
j∈N

∫ t∧τ

0

σjφ,ζ(Ys)dβ
j
s , t ≥ 0,
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showing that Y is a local strong solution to (8.11) with initial condition y. By Itô’s
formula (Theorem 4.2) we obtain P–almost surely

Xt∧τ = φ(Yt∧τ )

= h+

∫ t∧τ

0

(
Dφ(Ys)αφ,ζ(Ys) +

1

2

∑
j∈N

D2φ(Ys)(σ
j
φ,ζ(Ys), σ

j
φ,ζ(Ys))

)
ds

+
∑
j∈N

∫ t∧τ

0

Dφ(Ys)σ
j
φ,ζ(Ys)dβ

j
s , t ≥ 0.

Now, let ξ ∈ D(A∗) be arbitrary. Then we have P–almost surely
(8.15)
〈ξ,Xt∧τ 〉 = 〈ξ, h〉

+

∫ t∧τ

0

〈
ξ,Dφ(Ys)αφ,ζ(Ys) +

1

2

∑
j∈N

D2φ(Ys)(σ
j
φ,ζ(Ys), σ

j
φ,ζ(Ys))

〉
ds

+
∑
j∈N

∫ t∧τ

0

〈ξ,Dφ(Ys)σ
j
φ,ζ(Ys)〉dβ

j
s , t ≥ 0.

On the other hand, since X is a local weak solution to (8.5) with initial condition
h and lifetime τ , we have P–almost surely for all t ≥ 0 the identity
(8.16)

〈ξ,Xt∧τ 〉 = 〈ξ, h〉+

∫ t∧τ

0

(
〈A∗ξ,Xs〉+ 〈ξ, α(Xs)〉

)
ds+

∑
j∈N

∫ t∧τ

0

〈ξ, σj(Xs)〉dβjs .

Combining (8.15) and (8.16) yields up to indistinguishability

B +M = 0,(8.17)

where the processes B and M are defined as

Bt :=

∫ t∧τ

0

(
〈A∗ξ,Xs〉+

〈
ξ, α(Xs)−Dφ(Ys)αφ,ζ(Ys)

− 1

2

∑
j∈N

D2φ(Ys)(σ
j
φ,ζ(Ys), σ

j
φ,ζ(Ys))

〉)
ds, t ≥ 0,

Mt :=
∑
j∈N

∫ t∧τ

0

〈ξ, σj(Xs)−Dφ(Ys)σ
j
φ,ζ(Ys)〉dβ

j
s , t ≥ 0.

The process B + M is a continuous semimartingale with canonical decomposition
(8.17). Since the canonical decomposition of a continuous semimartingale is unique
up to indistinguishability, we deduce that B = M = 0 up to indistinguishability.
Using the Itô isometry (4.2) we obtain P–almost surely∫ t∧τ

0

(
〈A∗ξ,Xs〉+

〈
ξ, α(Xs)−Dφ(Ys)αφ,ζ(Ys)

− 1

2

∑
j∈N

D2φ(Ys)(σ
j
φ,ζ(Ys), σ

j
φ,ζ(Ys))

〉)
ds = 0, t ≥ 0,

∫ t∧τ

0

∑
j∈N
|〈ξ, σj(Xs)−Dφ(Ys)σ

j
φ,ζ(Ys)〉|

2ds = 0, t ≥ 0.
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By the continuity of the processesX and Y we obtain for all ξ ∈ D(A∗) the identities

〈A∗ξ, h〉+
〈
ξ, α(h)−Dφ(y)αφ,ζ(y)− 1

2

∑
j∈N

D2φ(y)(σjφ,ζ(y), σjφ,ζ(y))
〉

= 0,

〈ξ, σj(h)−Dφ(y)σjφ,ζ(y)〉 = 0, j ∈ N.

Consequently, the mapping ξ 7→ 〈A∗ξ, h〉 is continuous on D(A∗), and hence we
have h ∈ D(A∗∗) by the definition (2.1). By Proposition 2.7 we have A = A∗∗, and
thus we obtain h ∈ D(A), proving (8.12). By Proposition 2.7, the domain D(A∗) is
dense in H, and thus

σj(h) = Dφ(y)σjφ,ζ(y) ∈ ThM, j ∈ N,

showing (8.13). Moreover, for all ξ ∈ D(A∗) we have〈
ξ, Ah+ α(h)−Dφ(y)αφ,ζ(y)− 1

2

∑
j∈N

D2φ(y)(σjφ,ζ(y), σjφ,ζ(y))
〉

= 0.

Since the domain D(A∗) is dense in H, together with Proposition 8.10 we obtain

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)

= Ah+ α(h)− 1

2

∑
j∈N

(
Dφ(y)(〈ζ,Dσj(h)σj(h)〉) +D2φ(y)(σjφ,ζ(y), σjφ,ζ(y))

)
= Dφ(y)αφ,ζ(y)− 1

2

∑
j∈N

Dφ(y)(〈ζ,Dσj(h)σj(h)〉)

= Dφ(y)

(
αφ,ζ(y)− 1

2

∑
j∈N
〈ζ,Dσj(h)σj(h)〉

)
∈ ThM,

which proves (8.14).
(2)⇒ (1): Let h0 ∈M be arbitrary. By Proposition 8.8 and Remark 8.7 there exist
ζ1, . . . , ζm ∈ D(A∗) and a parametrization φ : V → U ∩M around h0 such that
the inverse φ−1 : U ∩M → V is given by φ−1 = 〈ζ, •〉, and φ has an extension
φ ∈ C2

b (Rm;H). Let h ∈ U ∩M be arbitrary and set y := 〈ζ, h〉 ∈ V . By relations
(8.12), (8.14) and Proposition 8.9 we obtain

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h) = Dφ(y)

(〈
ζ,Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)
〉)

,

and thus

Ah = Dφ(y)

(
〈A∗ζ, h〉+

〈
ζ, α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)
〉)

− α(h) +
1

2

∑
j∈N

Dσj(h)σj(h).

Together with Lemma 8.13, this proves the continuity of A on U∩M. Since h0 ∈M
was arbitrary, this proves that A is continuous onM.

Furthermore, by (8.13) and Proposition 8.9 we have

σj(h) = Dφ(y)σjφ,ζ(h) for every j ∈ N.(8.18)
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Moreover, by (8.12), (8.14) and Propositions 8.9 and 8.10 we obtain

Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h) = Dφ(y)

(〈
ζ,Ah+ α(h)− 1

2

∑
j∈N

Dσj(h)σj(h)
〉)

= Dφ(y)
(
〈A∗ζ, h〉+ 〈ζ, α(h)〉

)
− 1

2

∑
j∈N

Dφ(y)〈ζ,Dσj(h)σj(h)〉

= Dφ(y)αφ,ζ(y) +
1

2

∑
j∈N

(
D2φ(y)(σjφ,ζ(y), σjφ,ζ(y))−Dσj(h)σj(h)

)
.

This gives us

Ah+ α(h) = Dφ(y)αφ,ζ(y) +
1

2

∑
j∈N

D2φ(y)(σjφ,ζ(y), σjφ,ζ(y)).(8.19)

Now, let Y be the strong solution to (8.11) with initial condition y0 := 〈ζ, h0〉 ∈ V .
Since V is open, there exists ε > 0 such that Bε(y0) ⊂ V . We define the stopping
time

τ := inf{t ≥ 0 : Yt /∈ Bε(y0)}.

Since the process Y has continuous sample paths and satisfies Y0 = y0, we have
τ > 0 and P–almost surely

Yt∧τ ∈ V for all t ≥ 0.

Therefore, defining the H-valued process X := φ(Y ) we have P–almost surely

Xt∧τ ∈ U ∩M for all t ≥ 0.

Moreover, using Itô’s formula (Theorem 4.2) and incorporating (8.18), (8.19), we
obtain P–almost surely

Xt∧τ = φ(y0)

+

∫ t∧τ

0

(
Dφ(Ys)αφ,ζ(Ys) +

1

2

∑
j∈N

D2φ(Ys)φ(Ys)(σ
j
φ,ζ(Ys), σ

j
φ,ζ(Ys))

)
ds

+
∑
j∈N

∫ t∧τ

0

Dφ(Ys)σ
j
φ,ζ(Ys)dβ

j
s

= φ(y0) +

∫ t∧τ

0

(
Aφ(Ys) + α(φ(Ys))

)
ds+

∑
j∈N

∫ t∧τ

0

σj(φ(Ys))dβ
j
s

= h0 +

∫ t∧τ

0

(
AXs + α(Xs)

)
ds+

∑
j∈N

∫ t∧τ

0

σj(Xs)dβ
j
s , t ≥ 0,

showing that X is a local strong solution to (5.1) with lifetime τ .
(3) ⇒ (1): This implication is a direct consequence of Proposition 5.3. �

The results from this section are closely related to the existence of finite dimen-
sional realizations, that is, the existence of invariant manifolds for each starting
point h0, and we point out the articles [4, 3], [11, 12] and [21, 22] regarding this
topic. Furthermore, we mention that Theorem 8.15 has been extended in [10] to
SPDEs with jumps.
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