Expected Shortfall is not elicitable - so what?

Dirk Tasche

Bank of England – Prudential Regulation Authority¹ dirk.tasche@gmx.net

Modern Risk Management of Insurance Firms Hannover, January 23, 2014

¹ The opinions expressed in this presentation are those of the author and do not necessarily reflect views of the Bank of England Q C Dirk Tasche (PRA) ES is not elicitable - so what? 1/29

Background

Risk measures

Value-at-Risk and Expected Shortfall

Elicitability

Expected Shortfall and Expectiles

References

Background

Outline

Background

Risk measures

Value-at-Risk and Expected Shortfall

Elicitability

Expected Shortfall and Expectiles

References

3

• □ ▶ • 4 □ ▶ • □ ▶ • □ ▶

Background

Motive of this presentation

- For more than 10 years, academics have been suggesting Expected Shortfall (ES) as a coherent alternative to Value-at-Risk (VaR).
- Recently, the Basel Committee (BCBS, 2013) has confirmed that ES will replace VaR for regulatory capital purposes in the trading book.
- Gneiting (2011) points out that *elicitability* is a desirable property when it comes to "making and evaluating point forecasts". He finds that "conditional value-at-risk [ES] is not [elicitable], despite its popularity in quantitative finance."
- *Expectiles* are coherent and elicitable.
- That is why several authors have suggested to drop both VaR and ES and use expectiles instead.

イロト イポト イヨト イヨト 三日

Risk measures

Outline

Background

Risk measures

Value-at-Risk and Expected Shortfall

Elicitability

Expected Shortfall and Expectiles

References

3

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

What risk do we measure?

- Rockafellar and Uryasev (2013) distinguish 4 approaches to the measurement of risk:
 - Risk measures aggregated values of random cost.
 - Deviation measures deviations from benchmarks or targets.
 - Measures of regret utilities in the context of losses. They 'generate' risk measures.
 - Error measures quantifications of 'non-zeroness'. They 'generate' deviation measures.
- Risk measures may be understood as measures of solvency
 Use by creditors and regulators.
- Deviation measures may be interpreted as measures of uncertainty
 ⇒ Use by investors of own funds (no leverage).

イロト イポト イヨト イヨト 二日

Solvency measures

- There are many papers on desirable properties of risk measures. Most influential: Artzner et al. (1999)
- Coherent risk measures: How much capital is needed to make position² L acceptable to regulators?
 - Homogeneity ("double exposure \Rightarrow double risk"):

$$\rho(hL) = h\rho(L), \quad h \ge 0. \tag{1a}$$

Subadditivity ("reward diversification"):

$$\rho(L_1 + L_2) \le \rho(L_1) + \rho(L_2).$$
(1b)

Monotonicity ("higher losses imply higher risk"):

$$L_1 \leq L_2 \quad \Rightarrow \quad \rho(L_1) \leq \rho(L_2).$$
 (1c)

Translation invariance ("reserves reduce requirements")

$$\rho(L-a) = \rho(L) - a, \quad a \in \mathbb{R}.$$
(1d)

²Convention: Losses are positive numbers, gains are negative. ♂ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥ ► < ≥

Risk measures

Important and less important properties

Characterisation: A risk measure p is coherent if and only there is a set of probability measures Q such that

$$\rho(L) = \max_{Q \in \mathcal{Q}} \mathbb{E}_Q[L], \quad \text{for all } L.$$
(2)

 \Rightarrow Interpretation of coherent measures as expectations in stress scenarios.

▶ **Duality:**
$$\rho(L)$$
 solvency risk measure \Rightarrow
 $\delta(L) = \rho(L) - E[L]$ deviation measure

- Homogeneity and subadditivity are preserved in δ.
 Monotonicity and translation invariance are not preserved.
- Conclusion: Monotonicity and translation invariance are less important properties.

イロト イポト イヨト イヨト 三日

Other important properties

• Comonotonic additivity ("No diversification for total dependence"):

 $L_1 = f_1 \circ X, \ L_2 = f_2 \circ X \Rightarrow \rho(L_1 + L_2) = \rho(L_1) + \rho(L_2).$ (3a)

X common risk factor, f_1 , f_2 increasing functions.

Law-invariance ("context independence"³):

$$\mathbf{P}[L_1 \le \ell] = \mathbf{P}[L_2 \le \ell], \ell \in \mathbb{R} \Rightarrow \rho(L_1) = \rho(L_2).$$
(3b)

Proposition: Coherent risk measures ρ that are also law-invariant and comonotonically additive are spectral measures, i.e. there is a convex distribution function F_ρ on [0, 1] such that

$$\rho(L) = \int_0^1 q_u(L) F_{\rho}(du), \quad \text{for all } L.$$
 (3c)

 $q_u(L) = \min\{P[L \le \ell] \ge u\}$ denotes the *u*-quantile of *L*.

 ³Identical observations in a downturn and a recovery imply the same risk. < ≥ > ≥
 > <</td>
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >

Risk contributions

Generic one-period loss model:

$$L = \sum_{i=1}^{m} L_i.$$
 (4)

L portfolio-wide loss, *m* number of risky positions in portfolio, L_i loss with *i*-th position.

- ▶ **Risk sensitivities** $\rho(L_i | L) = \frac{d \rho(L+hL_i)}{d h} \Big|_{h=0}$ are of interest for risk management and optimisation.
- ρ homogeneous and differentiable \Rightarrow

$$\sum_{i=1}^{m} \rho(L_i | L) = \rho(L).$$
 (5)

 \Rightarrow Interpretation of sensitivities as risk contributions⁴.

 ⁴This approach to contributions is called *Euler allocation*.<</td>
 □ ▷ < ∂ ▷ < ≥ ▷ < ≥ ▷ < ≥ ○ < ○</td>

 Dirk Tasche (PRA)
 ES is not elicitable – so what?
 10/29

Some properties of risk contributions

• $\rho(L)$ positively homogeneous \Rightarrow

 $\rho(L_i \mid L) \le \rho(L_i) \quad \iff \quad \rho \text{ subadditive}$

For subadditive risk measures, the risk contributions of positions do never exceed their stand-alone risks.

• ho(L) positively homogeneous and subadditive \Rightarrow

$$\rho(L) - \rho(L - L_i) \le \rho(L_i \mid L) \tag{6}$$

So-called 'with – without' risk contributions underestimate the Euler contributions.

• ρ spectral risk measure, smooth loss distribution \Rightarrow

$$\rho(L_i | L) = \int_0^1 \mathbf{E} [L_i | L = q_u(L)] F_{\rho}(du).$$
 (7)

Dirk Tasche (PRA)

ES is not elicitable - so what?

11/29

Outline

Background

Risk measures

Value-at-Risk and Expected Shortfall

Elicitability

Expected Shortfall and Expectiles

References

3

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Shortfall probability risk measures

- Special case of solvency risk measures.
- Construction principle: For a given confidence level γ, the risk measure ρ(L) specifies a level of loss that is exceeded only with probability less than 1 - γ.
- Formally, $\rho(L)$ should satisfy

$$P[L > \rho(L)] \leq 1 - \gamma.$$
(8)

γ is often chosen on the basis of a target rating, for example for a target A rating with long-run average default rate⁵ of 0.07%:

$$1 - \gamma = 0.07\%$$

 Popular examples: (Scaled) standard deviation, Value-at-Risk (VaR), Expected Shortfall (ES).

⁵Source: S&P (2013), table 21. Dirk Tasche (PRA) ES is not elicitable – so what? 13/29

Standard deviation

► Scaled **standard deviation** (with constant *a* > 0):

$$\sigma_{a}(L) = E[L] + a\sqrt{\operatorname{var}[L]} = E[L] + a\sqrt{E[(L - E[L])^{2}]}.$$
 (9a)

By Chebychev's inequality:

$$\mathbf{P}[L > \sigma_a(L)] \leq \mathbf{P}[|L - \mathbf{E}[L]| > a\sqrt{\mathrm{var}[L]}] \leq a^{-2}.$$
(9b)

► Hence, choosing $a = \frac{1}{\sqrt{\gamma}}$ (e.g. $\gamma = 0.001$) yields

$$P[L > \sigma_a(L)] \leq \gamma.$$
(9c)

Alternative: Choose a such that (9c) holds for, e.g., normally distributed L. Underestimates risk for skewed loss distributions.

Dirk Tasche (PRA)

Properties of standard deviation

- Homogeneous, subadditive and law-invariant
- Not comonotonically additive, but additive for risks with correlation 1
- Not monotonic, hence not coherent
- Easy to estimate moderately sensitive to 'outliers' in sample
- Overly expensive if calibrated (by Chebychev's inequality) to be a shortfall measure
- Risk contributions:

$$\sigma_a(L_i \mid L) = a \frac{\operatorname{cov}(L_i, L)}{\sqrt{\operatorname{var}(L)}} + \operatorname{E}[L_i].$$
(10)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Dirk Tasche (PRA)

ES is not elicitable - so what?

15/29

Value-at-Risk

- ► For $\alpha \in (0, 1)$: α -quantile $q_{\alpha}(L) = \min\{\ell : P[L \leq \ell] \geq \alpha\}$.
- ► In finance, $q_{\alpha}(L)$ is called **Value-at-Risk** (VaR).
- If L has a continuous distribution (i.e. P[L = ℓ] = 0, ℓ ∈ ℝ), then q_α(L) is a solution of P[L ≤ ℓ] = α.
- Quantile / VaR-based risk measure:

$$VaR_{\alpha}(L) = q_{\alpha}(L).$$
(11a)

By definition VaR_α(L) satisfies

$$P[L > VaR_{\alpha}(L)] \le 1 - \alpha.$$
(11b)

イロト イポト イヨト イヨト 二日

Properties of Value-at-Risk

- Homogeneous, comonotonically additive and law-invariant
- Not subadditive, hence not coherent
- Easy to estimate by sorting sample not sensitive to extreme 'outliers'
- Provides least loss in worst case scenario may be misleading.
- Risk contributions:

$$\operatorname{VaR}_{\alpha}(L_i \mid L) = \mathrm{E}[L_i \mid L = q_{\alpha}(L)].$$
(12)

Estimation of risk contributions is difficult in continuous case.

・ロト (得) (王) (王) (王)

Expected Shortfall

• **Expected Shortfall** (ES, Conditional VaR, superquantile). Spectral risk measure with $F_{\rho}(u) = (1 - \alpha)^{-1} \max(u, \alpha)$:

$$\begin{split} \mathrm{ES}_{\alpha}(L) &= \frac{1}{1-\alpha} \int_{\alpha}^{1} q_{u}(L) \, du \\ &= \mathrm{E}[L \mid L \ge q_{\alpha}(L)] \\ &+ \left(\mathrm{E}[L \mid L \ge q_{\alpha}(L)] - q_{\alpha}(L) \right) \left(\frac{\mathrm{P}[L \ge q_{\alpha}(L)]}{1-\alpha} - 1 \right). \end{split}$$
(13)

• If $P[L = q_{\alpha}(L)] = 0$ (in particular, if *L* has a density),

$$\mathrm{ES}_{lpha}(L) = \mathrm{E}[L \,|\, L \geq q_{lpha}(L)].$$

• ES dominates VaR: $ES_{\alpha}(L) \geq VaR_{\alpha}(L)$.

Dirk Tasche (PRA)

イロト イポト イヨト イヨト 二日

Properties of Expected Shortfall

- Coherent, comonotonically additive and law-invariant
- Easy to estimate by sorting. Provides average loss in worst case scenario
- Least coherent law-invariant risk measure that dominates VaR
- Risk contributions (continuous case):

$$\mathrm{ES}_{\alpha}(L_i \mid L) = \mathrm{E}[L_i \mid L \ge q_{\alpha}(L)]. \tag{14}$$

- Very sensitive to extreme 'outliers'. For same accuracy, many more observations than for VaR at same confidence level might be required.
- ► Big gap between VaR and ES indicates heavy tail loss distribution.

< ロ > < 同 > < 回 > < 回 > 、 回 > 、 回

Outline

Background

Risk measures

Value-at-Risk and Expected Shortfall

Elicitability

Expected Shortfall and Expectiles

References

э

・ コ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Related definitions

A scoring function is a function

$$s: \mathbb{R} \times \mathbb{R} \to [0,\infty), (x,y) \mapsto s(x,y),$$
 (15a)

where *x* and *y* are the *point forecasts* and *observations* respectively.

• Let ν be a functional on a class of probability measures \mathcal{P} on \mathbb{R} :

$$u: \mathcal{P} \to 2^{\mathbb{R}}, \ \mathcal{P} \mapsto \nu(\mathcal{P}) \subset \mathbb{R}.$$

A scoring function $s : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ is **consistent** for the functional ν relative to \mathcal{P} if and only if

$$E_{P}[s(t, Y)] \leq E_{P}[s(x, Y)]$$
(15b)

for all $Y \sim P \in \mathcal{P}$, $t \in \nu(P)$ and $x \in \mathbb{R}$.

s is strictly consistent if it is consistent and

$$E_{P}[s(t, Y)] = E_{P}[s(x, Y)] \Rightarrow x \in \nu(P).$$
(15c)

Dirk Tasche (PRA)

ES is not elicitable - so what?

Elicitability

- The functional ν is elicitable relative to P if and only if there is a scoring function s which is strictly consistent for ν relative to P.
- Examples:

Expectation:
$$\nu(P) = \int x P(dx), \quad s(x, y) = (y - x)^2.$$
 (16a)
Quantiles: $\nu(P) = \{x : P[(-\infty, x)] \le \alpha \le P[(-\infty, x)]\}$ (16b)

Quantiles:
$$\nu(P) = \{x : P[(-\infty, x)] \le \alpha \le P[(-\infty, x]]\},$$
 (16b)
 $s(x, y) = \frac{\alpha}{1-\alpha} \max(y - x, 0) + \max(x - y, 0).$

- Interpretation:
 - Point estimates of elicitable functionals can be determined by means of regression:

$$\nu(P) = \arg\min_{x} \mathbb{E}_{P}[s(x, Y)], \quad Y \sim P.$$
 (16c)

イロト イポト イヨト イヨト 三日

Point estimation methods of elicitable functionals can be compared by means of the related scoring functions (interesting for backtesting).

Standard deviation and ES are not elicitable

Necessary for ν being elicitable ("convex level sets"):

$$0 < \pi < 1, \quad t \in \nu(P_1) \cap \nu(P_2) \\ \Rightarrow \quad t \in \nu(\pi P_1 + (1 - \pi) P_2)$$
(17a)

- By counter-examples: Standard deviation and ES violate (17a).
 ⇒ Standard deviation and ES are not elicitable.
- But standard deviation and ES can be calculated by means of regression, with s as in (16a) and (16b):

$$\operatorname{var}(\boldsymbol{P}) = \min_{\boldsymbol{x}} \operatorname{E}_{\boldsymbol{P}}\left[(\boldsymbol{Y} - \boldsymbol{x})^2 \right] \tag{17b}$$

$$\mathrm{ES}_{\alpha}(P) = \min_{x} \Big\{ \mathrm{E}_{P} \Big[\frac{\alpha}{1-\alpha} \max(Y-x,0) + \max(x-Y,0) \Big] + \mathrm{E}_{P}[Y] \Big\}.$$
(17c)

イロト イポト イヨト イヨト 三日

ES is not elicitable - so what?

Outline

Background

Risk measures

Value-at-Risk and Expected Shortfall

Elicitability

Expected Shortfall and Expectiles

References

э

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Expectiles

For 0 < τ < 1 the *τ*-expectile of square-integrable Y is defined by

$$e_{\tau}(Y) = \arg\min_{x} E[\tau \max(Y-x,0)^2 + (1-\tau) \max(x-Y,0)^2]$$
 (18a)

• e_{τ} is elicitable with scoring function

$$s(x,y) = \tau \max(y-x,0)^2 + (1-\tau) \max(x-y,0)^2.$$
 (18b)

• $e_{\tau}(Y)$ is the unique solution of

$$\tau \operatorname{E}[\max(Y - x, 0)] = (1 - \tau) \operatorname{E}[\max(x - Y, 0)]$$
 (18c)

• e_{τ} is law-invariant and coherent for $\tau \ge 1/2$ (Bellini et al., 2013).

・ ロ ト ・ 同 ト ・ ヨ ト ・ ヨ ト

Properties of expectiles

- $e_{1/2}[Y] = E[Y].$
- e_{τ} is sensitive to extreme 'outliers'.
- corr $[Y_1, Y_2] = 1 \Rightarrow e_{\tau}(Y_1 + Y_2) = e_{\tau}(Y_1) + e_{\tau}(Y_2)$
- But e_{τ} is not comonotonically additive for $\tau > 1/2$.
 - If *e_τ* were comonotonically additive then it would be a spectral measure.
 - By Corollary 4.3 of Ziegel (2013) the only elicitable spectral measure is the expectation. Hence *τ* = 1/2 − contradiction!
- Hence, for non-linear dependence expectiles may see diversification where there is none.
- Risk contributions (conceptually easy to estimate):

$$\boldsymbol{e}_{\tau}(L_i \mid L) = \frac{\tau \operatorname{E}[L_i \mathbf{1}_{\{L \ge \boldsymbol{e}_{\tau}(L)\}}] + (1 - \tau) \operatorname{E}[L_i \mathbf{1}_{\{L < \boldsymbol{e}_{\tau}(L)\}}]}{\tau \operatorname{P}[L \ge \boldsymbol{e}_{\tau}(L)] + (1 - \tau) \operatorname{P}[L < \boldsymbol{e}_{\tau}(L)]}.$$
 (19)

Comparison

- Expectiles:
 - Coherent, law-invariant and elicitable.
 - No obvious interpretation in terms of solvency.
 - May see diversification where there is none.
- Expected Shortfall:
 - Coherent, law-invariant and comonotonically additive.
 - Clearly related to solvency probability (via confidence level).
 - Not elicitable but composition of elicitable conditional expectation and quantile.
 - From (13):

$$ES_{\gamma}(L) \approx 1/4 \left(q_{\gamma}(L) + q_{0.75 \gamma + 0.25}(L) + q_{0.5 \gamma + 0.5}(L) + q_{0.25 \gamma + 0.75}(L) \right)$$
 (20)

イロト イポト イヨト イヨト 三日

► Hence backtest q_γ(L), q_{0.75 γ+0.25}(L), q_{0.5 γ+0.5}(L), and q_{0.25 γ+0.75}(L) to backtest ES.

References

Outline

Background

Risk measures

Value-at-Risk and Expected Shortfall

Elicitability

Expected Shortfall and Expectiles

References

3

・ コ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

References

- P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. *Mathematical Finance*, 9(3):203–228, 1999.
- BCBS. *Fundamental review of the trading book: A revised market risk framework.* Basel Committee on Banking Supervision, October 2013.
- F. Bellini, B. Klar, A. Müller, and E. Rosazza Gianin. Generalized quantiles as risk measures. Preprint, 2013. URL http://ssrn.com/abstract=2225751.
- T. Gneiting. Making and evaluating point forecasts. *Journal of the American Statistical Association*, 106(494):746–762, 2011.
- R.T. Rockafellar and S. Uryasev. The fundamental risk quadrangle in risk management, optimization and statistical estimation. *Surveys in Operations Research and Management Science*, 18(1):33–53, 2013.
- S&P. Default, Transition, and Recovery: 2012 Annual Global Corporate Default Study And Rating Transitions. Report, Standard & Poor's, March 2013.
- J. F. Ziegel. Coherence and elicitability. ArXiv e-prints, March 2013.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●