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Volatility in Mathematical Finance

» Traditional models (Black and Scholes, 1973; Merton, 1973):
dSt = ,UStdt + O'StdBt.

» Market data: The volatility is neither constant nor deterministic.
» Stochastic volatility models (Heston, 1993):

dSt == ,lLStdt + \/l/>t5tdBt,
dl/t = 0(/1 — I/t)dt + O'\/;td.ét.

v

Epstein and Ji (2013): This approach leads to model uncertainty.

» Alternative: We consider a family of probability measures.

v

Goal: Models are robust with respect to the volatility.
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Mathematical Framework

» Let (2, F, Py) be the Wiener space.
» The canonical process (B;); is a Brownian motion under Fj.

» For each [g,7]-valued, (F;);~adapted process o = (oy)t,

. -1
PUZ:P()O(/O'tdBt) .
0

» The collection of all such measures is denoted by P.
» We define the sublinear expectation
B[] == sup Ep[]
PeP
» [ corresponds to the G-expectation on LE(R), ie., (By): is a
G-Brownian motion under E (Denis, Hu, and Peng, 2011).
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G-Brownian Motion

> G-expectation: u(t, z) := E[p(x + By)] is the viscosity solution to

where G(a) := %supge[gﬁ] (c%a).

» Then ((B):); is an uncertain process, satisfying
2t > (B); > o’t  quasi-surely.
» The space of admissible random variables is given by
L2.() = {¢ € LP(Q) | € has a quasi-continuous version,

Jim E[€[71¢p5ny] = 0}

» The “same” holds for the space of admissible processes, ME(0,T).
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The Heath-Jarrow-Morton (HJM) Methodology

» For t <T < T, the forward rate satisfies (quasi-surely)

t

Jo(T) = folT) + / 0 (T)du + / B.(T)dB, + / u(T)d(B).

» Zero-coupon bonds and the money-market account are defined by

pry = oo~ [ i)

M, = exp(/ 7"5d8>7
0

respectively, where the short rate is given by ry := fi(¢).
» We restrict to the discounted bonds, P,(T) := M, ' P,(T).
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Underlying Assumptions

Assumption (No-Arbitrage).

We assume that
o(T) =0, A(T)=BT)HT),
where b(T) is defined by b;(T) := j;T Bi(s)ds.

Assumption (Regularity).
We assume that 3 : [0, 7] x [0,7] — R is continuous.

Assumption (Hedging).
We assume that b(T') is strictly positive (invertible).
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Additional Contract

» We consider an additional contract with the following payoff.

Payoff: &o & R En—1 N

] ] ] ]
T T T T

Time: 0 To T T Tnv_o1 Ty

» Then the discounted payoff is given by

N
X =Y Mg'.
=0
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No-Arbitrage Pricing

» In the classical case, no-arbitrage prices are given by
ME[X] = M;Ep,[X|F).

» In the presence of volatility uncertainty, [ is sublinear, implying

E[X] = sup Ep[X] > Jnf, Ep[X] = —E[-X].

» No-arbitrage prices are determined by M,E, [f( ] and —Mt]I:lt[—f( 1,
i.e., there is (possibly) a range of no-arbitrage prices. GERENE
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Pricing Single Cashflows

» In order to price a (single) cashflow £, we need to compute
MyE([M7E),  — My [ My e
» We define the T-forward sublinear expectation, ET7 such that
M (M7 €] = P(T)E] [¢].

> R7 corresponds to the expectation under the forward measure.

» Details

» We obtain further results for pricing typical cashflows.
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Pricing Bond Options

» Most cashflows correspond to bond options, that is,
N
6 = (p((PTO (Tl))1:1>

for a function ¢ : RN — R.

» The pricing reduces to solving a nonlinear PDE if ¢ satisfies

p(z) = oY) < OO A [2]™ + |y[™)]z = y] (1)

for a positive integer m and a constant C' > 0. (EEEAE

» If o is also convex, then we have

Elo[e] = ER [¢|F), —EPo[—¢] = ER [¢|F).

» Details
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Pricing a Stream of Cashflows

» We cannot price the cashflows separately, since

N N
<N EMz'el, -E[-X]>Y -E[-Mg'e).
i=0

=0

> If &, for all i, satisfies B7'[¢;] = —ET*[—&;], then
ME,[X ZPt TOET[¢] = —ME,[-X].

» In general, }E[X] = }70+ and —E[—X] = —1707, where
ffii = PTifl(Ti)IAET [iél + z+1]

fori=0,1,..., N and Y]\i_l = 0.
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A Stream of Bond Options

» Most interest rate derivatives consist of bond options, i.e.,

& = ¢i(Pr,(Tis))

for a function ¢; : R - R fori =0,1,..., N — 1 and £y := 0.

» The pricing reduces to solving nonlinear PDEs if for all 4,

pi(@) —@i(y)| < CL+ |2|™ + [y[™)|z -yl
for a positive integer m and a constant C' > 0.
» If ¢; is also convex for all ¢, then we have

N-1 N-1
Yot =Y P(TOER (&), —Yy = > Po(T)EL[&]

i=0 =0

» Details

MV
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Common Interest Rate Derivatives

» Fixed-coupon bonds, floating rate notes, and interest rate swaps
have simple (linear) payoffs.

» Swaptions correspond to convex bond options.

» Caps and floors and typical in-arrears contracts can be written as
a stream of convex bond options. (S

» Other contracts can be priced by solving nonlinear PDEs.
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Practical Relevance

» The theoretical results offer an explanation for empirical findings
(unspanned stochastic volatility).

» The robust pricing procedure allows for stress testing by
considering different levels of uncertainty.

» One can infer the level of uncertainty from observable spreads to
price other instruments.

» Alternatively, one can infer the level of uncertainty from the
historical volatility as confidence intervals.
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Thank you for your attention.
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Common Interest Rate Derivatives
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Symmetric and Asymmetric Contracts

> We consider two contracts with discounted payoffs X5 and X4.
> X5 has a symmetric payoff and X4 has an asymmetric payoff:

E[X®) = —-E[-X5], E[X4]> -E[-X4].
> We assume that the discounted prices, (X); and X', satisfy

X5 =RJ[X%), E[X4) > X3 > -E[-X1].
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Extended Bond Market

Definition (Market Strategy).

A market strategy (7, 7%, 74, 7) consists of processes :7(7rtl, ey T )
and 7% = (77)¢, a constant 74 € R, and a vector 7 € [0, T]" for some
n € N. The portfolio value at terminal time is given by

o(m, 75, Z/ midPy(T;) / 2dX7 + (XA - X.

Definition (Arbitrage).

A market strategy (7, 7%, 74, 7) is called arbitrage strategy if

S77TA77') >0 quasi-surely,
)

v
P(o(m, 7%, 74, 7) > 0) >0 for at least one P € P.

IMV s



Absence of Arbitrage

Proposition (No-Arbitrage).
The extended bond market is arbitrage-free.

Remark (Hedging).

The pricing-hedging duality under volatility uncertainty (Vorbrink,
2014) shows that other pricing procedures lead to arbitrage.
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Forward Sublinear Expectation

Definition (Forward Sublinear Expectation)
For ¢ € LY (Qr) with p > 1 and T < T, we define the T-forward
sublinear expectation ET by EZ[¢] := ¥,7*, where YT solves

T T
Y;Tﬁg = g - /t bu(T)Zud<B>u - ,/t ZudB“ - (KT - Kt)

» Then E7 is a time consistent sublinear expectation and

vt = (x]) 'R [XF e,

where X7 := £ Hu, Ji, Peng, and Song, 2014).
t Po(T)

4 Back
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Pricing Bond Options

Proposition (Bond Options).
If ¢ satisfies (1), then for ¢ < Tp,

£ () = u* (1, (FEDY,),

where u™T : [0, Tp] x RY — R is the unique viscosity solution to
du+ G(o(t,z)D2uo(t,z)') =0, u(Ty,z) = Ep(z)

where z = (z;,)N; and o(t, ) := ((b:(T}) — bs(Tp)) i)Y,
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Pricing Convex Bond Options

Proposition (Convex Bond Options).
If ¢ is convex and satisfies (1), then for ¢ < Tj,

~Tor¢] _ 25 Py(T;) \N T _ 0 Py(Ty) \N
]Eto[f] =u (t? (Pt(TO))i:l)’ _]Eto[_g] - U’*(tv (Pt(To))izl)’
where u? : [0, Ty] x RV — R, for o > 0, is defined by

u? (t,x) = Ep, [0 ((X7,)iL1)]

and the process X¢ = (X!);<s<1,, for i = 1,..., N, is given by

Xi=wi— [ (0T = b)) XirdB.
t
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Pricing a Stream of Bond Options

Proposition (Stream of Bond Options).
If ; satisfies (2) for all i = 0,1,..., N — 1, then

ot + Po(T Po(T, Po(Try1)\N—1
V5 = Po(Toyut (0, 2073, (oo, i) ),

where uli 20, Ty 1] x REWV=9+1 s R for i = 1,..., N, is the unique
viscosity solution to the nonlinear PDE

815“ + G(Hi(t,l'i, Dwiu7 Dilajlu)) = 07 U(Tiflaxi) = fzi(xZ)7
where z; := (&, (:Z’k,izk),i\[:iﬂ) fori=1,..,N —1and x5 := Zn and
() == %01 (@) + Fipruisr (Tim1, Tir1)

fori=1,..,N —1and fy(zn):= Ton_1(ZN).
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Pricing a Stream of Bond Options

H;(t,x;, Dy u, D?. ) = ai(t,xi)’Diiziu oi(t, ;) + 2Dg,u pi(t, x;),
oi(t, ) 1= diag(ws) (W (T3) = bi(Ti ),
N-1
(be(Th) = be(Ti ), be(Tin) = (T )
1i(t, ;) := diag(o;(t, z;)) (0 (be(T;—1) = be(Th—1),
b(Tr1) — bu(T) 1)
fori=1,...,N —1 and

Hy(t,xn,Dyyu, D% u) = (bt(TN)fbt(TN_l)) 2,02

TNIN QTNIN

4 Back
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Pricing a Stream of Convex Bond Options

Proposition (Stream of Convex Bond Options)
If ; is convex and satisfies (2) for all i = 1,..., N, then

N
Yo = 30 Po(Tioa)uf (0, 2oL,
i=1

N
Yo = 2 Ro(Tioa)uf (0, 7y
i=1

where uf : [0,T;—1] x R = R, for i = 1,..., N and ¢ > 0, is defined by

uf (t, &) == Ep,[0i(XT,_,)]
and the process X*

(X)i<s<t,_, is given by

S
Xi=43 —/ (bu(T3) — bu(Ti—1)) X\0dB,.
t
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Pricing Fixed Coupon Bonds

» The cashflows of a fixed coupon bond are given by
& =1y () + 1o, ny (T = Tima) K
for i =0,1,...,N.

Proposition (Fixed Coupon Bonds).
Let & be given by (3) for ¢ = 0,1, ..., N. Then for ¢t < Ty,

N
ME,[X] = P(Tw) + Y PT)(T; — Ti-1) K = —ME,[- X].

=1
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Pricing Floating Rate Notes

» The cashflows of a floating rate note are given by
& =1y (@) + 1, vy ()T — Tima) Ly, (T) (4)
fori=0,1,..., N, where
Lt (T}) = p=r— (pmy — V-
Proposition (Floating Rate Notes).
Let &; be given by (4) for ¢ = 0,1,..., N. Then for ¢t < Ty,

ME,[X] = P,(Tp) = —M,E,[-X].
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Pricing Interest Rate Swaps

» The cashflows of an interest rate swap are given by
& =1q,. vy ()T — Ti—1) Ly, (T3) — K) (5)
fort=0,1,...,N.

Proposition (Interest Rate Swaps).
Let &; be given by (5) for ¢ = 0,1, ..., N. Then for ¢t < Ty,

N
ME,[X] = P/(To) — Pi(Tw) = > P(Ti)(Ti = Ti1) K = =M, [ X].

i=1
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Swaptions

» The payoff is determined by Proposition (Interest Rate Swaps).

» The cashflows of a swaption are given by

N
,gi=1{0}(z')(1—PTo ZPTO T — Ty )K) (6)

fori=0,1,...,N.
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Pricing Swaptions

Theorem (Swaptions).
Let & be given by (6) for i = 0,1, ..., N. Then it holds

E[X] = PO(TO)UE<07 (535?03)121)7

~E[-X] = Po(To)u (0, (RED™ ),

where the function u? : [0, Ty] x RY — R, for o > 0, is defined by

W (t,z) = Ep, Kl — XN~ iX%O(Ti —Ti1)K)+}

i=1

and the process X’ = (X!);<s<1,, for all i = 1,..., N, is given by

X;’:xif/ ou(To, T;) X 0dB,.
t

IMV
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Caps and Floors

» The cashflows of a Cap are called caplets and are given by

& =10 6T —Tia) (L, (T) - K) T (7)

fori=0,1,...,N.

» The cashflows of a Floor are called floorlets and are given by

gi = 1{1,...,N}(i)(rfi - Ti—l)(K - LTifl(Ti))—i_ (8)

fori=0,1,...,N.
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Pricing Caps

Theorem (Caps).
Let & be given by (7) for i = 0,1,..., N. Then it holds

N
E[X] =Y Po(Ti1)u (0, Pfgg_i)l))’
i=1

N
~E[-X] = Y Ro(Ti-0)uf (0, morsy)
=1

where uf : [0,T;—1] x R = R, for i = 1,..., N and o > 0, is defined by
uf (t, ;) == = Epy [(Ki — X7, )7

for K; := — and the process X = (X!)<s<r;_, is given by

1
1+(T; =T

X; = T; —/ O'u(Ti_l,Ti)X,ZO'dBu.
t
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Pricing Floors

Theorem (Floors).
Let &; be given by (8) for ¢ = 0,1,..., N. Then it holds

N
E[X] = ZPo(Ti—l)U{?(O’ Pf?f(QTi)l))’
=1

%

N
—B-X] = 3 RoTi-1)uf (0, ),
i=1

where uf : [0,T;—1] x R = R, for i =1,..., N and ¢ > 0, is defined by
uf(t,xz) = %ZEP[(X%f—I — Kz)Jr]

and K; and the process X* are given as in Theorem (Caps).
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In-Arrears Contracts

» Now the floating rate is reset each time the contract pays off.
» As a representative contract, we consider in-arrears swaps.
» Other in-arrears contracts can be priced in a similar way.

» The cashflows of an in-arrears swap are given by

& =1501,..8-1y()(Tiy1 — Ti) (L1, (Ti1) — K) (9)

fori=0,1,...,N.
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Pricing In-Arrears Swaps

Theorem (In-Arrears Swaps).
Let &; be given by (9) for ¢ = 0,1,..., N. Then it holds

N
BIX) = 3" Po(T)ud (0, BTy,
i=1

N
~R[-X] = ZPO(E)UJ%(O’ P?DEJT(QT;)I))’
=1

where uf : [0,T;—1] x R = R, for i = 1,..., N and ¢ > 0, is defined by

uf (t, i) == Ep [Xg,  (Xf, , — )]

for K; as in Theorem (Caps) and X* = (X;)tSSSTi—l is given by
XZ; =T */ Uu(TnT%_l)XZLO'dBu.
t
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