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Volatility in Mathematical Finance

I Traditional models (Black and Scholes, 1973; Merton, 1973):

dSt = µStdt+ σStdBt.

I Market data: The volatility is neither constant nor deterministic.

I Stochastic volatility models (Heston, 1993):

dSt = µStdt+
√
νtStdBt,

dνt = θ(µ̃− νt)dt+ σ
√
νtdB̃t.

I Epstein and Ji (2013): This approach leads to model uncertainty.

I Alternative: We consider a family of probability measures.

I Goal: Models are robust with respect to the volatility.



Mathematical Framework

I Let (Ω,F , P0) be the Wiener space.

I The canonical process (Bt)t is a Brownian motion under P0.

I For each [σ, σ]-valued, (Ft)t-adapted process σ = (σt)t,

Pσ := P0 ◦
(∫ ·

0

σtdBt

)−1

.

I The collection of all such measures is denoted by P.

I We define the sublinear expectation

Ê[·] := sup
P∈P

EP [·].

I Ê corresponds to the G-expectation on L1
G(Ω), i.e., (Bt)t is a

G-Brownian motion under Ê (Denis, Hu, and Peng, 2011).



G-Brownian Motion

I G-expectation: u(t, x) := Ê[ϕ(x+Bt)] is the viscosity solution to

∂tu+G(∂2
xxu) = 0, u(0, x) = ϕ(x),

where G(a) := 1
2 supσ∈[σ,σ](σ

2a).

I Then (〈B〉t)t is an uncertain process, satisfying

σ2t ≥ 〈B〉t ≥ σ2t quasi-surely .

I The space of admissible random variables is given by

LpG(Ω) =
{
ξ ∈ Lp(Ω)

∣∣ ξ has a quasi-continuous version,

lim
n→∞

Ê[|ξ|p1{|ξ|>n}] = 0
}
.

I The “same” holds for the space of admissible processes, Mp
G(0, T ).



Related Literature

Mathematical approaches to volatility uncertainty:

I Denis and Martini (2006), Peng (2007, 2008, 2019),...

Volatility uncertainty in asset markets:

I Avellaneda, Levy, and Parás (1995), Lyons (1995),...

Volatility uncertainty in interest rate models:

I Fadina, Neufeld, and Schmidt (2019), Hölzermann (2021, 2022)
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The Heath-Jarrow-Morton (HJM) Methodology

I For t ≤ T ≤ T̄ , the forward rate satisfies (quasi-surely)

ft(T ) = f0(T ) +

∫ t

0

αu(T )du+

∫ t

0

βu(T )dBu +

∫ t

0

γu(T )d〈B〉u.

I Zero-coupon bonds and the money-market account are defined by

Pt(T ) := exp

(
−
∫ T

t

ft(s)ds

)
,

Mt := exp

(∫ t

0

rsds

)
,

respectively, where the short rate is given by rt := ft(t).

I We restrict to the discounted bonds, P̃t(T ) := M−1
t Pt(T ).



Underlying Assumptions

Assumption (No-Arbitrage).
We assume that

α(T ) = 0, γ(T ) = β(T )b(T ),

where b(T ) is defined by bt(T ) :=
∫ T
t
βt(s)ds.

Assumption (Regularity).
We assume that β : [0, T̄ ]× [0, T̄ ]→ R is continuous.

Assumption (Hedging).
We assume that b(T ) is strictly positive (invertible).
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Additional Contract

I We consider an additional contract with the following payoff.

Payoff:

Time: 0

ξ0

T0

ξ1

T1

· · ·
· · ·

ξN−1

TN−1

ξN

TN

I Then the discounted payoff is given by

X̃ :=

N∑
i=0

M−1
Ti
ξi.



No-Arbitrage Pricing

I In the classical case, no-arbitrage prices are given by

MtÊt[X̃] = MtEP0
[X̃|Ft].

I In the presence of volatility uncertainty, Ê is sublinear, implying

Ê[X̃] = sup
P∈P

EP [X̃] ≥ inf
P∈P

EP [X̃] = −Ê[−X̃].

I No-arbitrage prices are determined by MtÊt[X̃] and −MtÊt[−X̃],
i.e., there is (possibly) a range of no-arbitrage prices. Details
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Pricing Single Cashflows

I In order to price a (single) cashflow ξ, we need to compute

MtÊt[M−1
T ξ], −MtÊt[−M−1

T ξ].

I We define the T -forward sublinear expectation, ÊT , such that

MtÊt[M−1
T ξ] = Pt(T )ÊTt [ξ].

I ÊT corresponds to the expectation under the forward measure.
Details

I We obtain further results for pricing typical cashflows.



Pricing Bond Options

I Most cashflows correspond to bond options, that is,

ξ := ϕ
((
PT0

(Ti)
)N
i=1

)
for a function ϕ : RN → R.

I The pricing reduces to solving a nonlinear PDE if ϕ satisfies

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y| (1)

for a positive integer m and a constant C > 0. Details

I If ϕ is also convex, then we have

ÊT0
t [ξ] = ET0

Pσ
[ξ|Ft], −ÊT0

t [−ξ] = ET0

Pσ [ξ|Ft].

Details
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Pricing a Stream of Cashflows

I We cannot price the cashflows separately, since

Ê[X̃] ≤
N∑
i=0

Ê[M−1
Ti
ξi], −Ê[−X̃] ≥

N∑
i=0

−Ê[−M−1
Ti
ξi].

I If ξi, for all i, satisfies ÊTit [ξi] = −ÊTit [−ξi], then

MtÊt[X̃] =

N∑
i=0

Pt(Ti)ÊTit [ξi] = −MtÊt[−X̃].

I In general, Ê[X̃] = Ỹ +
0 and −Ê[−X̃] = −Ỹ −0 , where

Ỹ ±i := PTi−1
(Ti)ÊTiTi−1

[±ξi + Ỹ ±i+1]

for i = 0, 1, ..., N and Ỹ ±N+1 := 0.



A Stream of Bond Options

I Most interest rate derivatives consist of bond options, i.e.,

ξi := ϕi
(
PTi(Ti+1)

)
for a function ϕi : R→ R for i = 0, 1, ..., N − 1 and ξN := 0.

I The pricing reduces to solving nonlinear PDEs if for all i,

|ϕi(x)− ϕi(y)| ≤ C(1 + |x|m + |y|m)|x− y| (2)

for a positive integer m and a constant C > 0. Details

I If ϕi is also convex for all i, then we have

Ỹ +
0 =

N−1∑
i=0

P0(Ti)ETiPσ [ξi], −Ỹ −0 =

N−1∑
i=0

P0(Ti)ETiPσ [ξi]

Details
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Common Interest Rate Derivatives

I Fixed-coupon bonds, floating rate notes, and interest rate swaps
have simple (linear) payoffs. Details

I Swaptions correspond to convex bond options. Details

I Caps and floors and typical in-arrears contracts can be written as
a stream of convex bond options. Details

I Other contracts can be priced by solving nonlinear PDEs.



Practical Relevance

I The theoretical results offer an explanation for empirical findings
(unspanned stochastic volatility).

I The robust pricing procedure allows for stress testing by
considering different levels of uncertainty.

I One can infer the level of uncertainty from observable spreads to
price other instruments.

I Alternatively, one can infer the level of uncertainty from the
historical volatility as confidence intervals.



Thank you for your attention.
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Symmetric and Asymmetric Contracts

I We consider two contracts with discounted payoffs X̃S and X̃A.

I X̃S has a symmetric payoff and X̃A has an asymmetric payoff:

Ê[X̃S ] = −Ê[−X̃S ], Ê[X̃A] > −Ê[−X̃A].

I We assume that the discounted prices, (X̃S
t )t and X̃A

0 , satisfy

X̃S
t = Êt[X̃S ], Ê[X̃A] > X̃A

0 > −Ê[−X̃A].



Extended Bond Market

Definition (Market Strategy).
A market strategy (π, πS , πA, τ) consists of processes π = (π1

t , ..., π
n
t )t

and πS = (πSt )t, a constant πA ∈ R, and a vector τ ∈ [0, T̄ ]n for some
n ∈ N. The portfolio value at terminal time is given by

ṽ(π, πS , πA, τ) :=

n∑
i=1

∫ τi

0

πitdP̃t(τi) +

∫ T̄

0

πSt dX̃
S
t + πA(X̃A − X̃A

0 ).

Definition (Arbitrage).
A market strategy (π, πS , πA, τ) is called arbitrage strategy if

ṽ(π, πS , πA, τ) ≥ 0 quasi-surely,

P
(
ṽ(π, πS , πA, τ) > 0

)
> 0 for at least one P ∈ P.



Absence of Arbitrage

Proposition (No-Arbitrage).
The extended bond market is arbitrage-free.

Remark (Hedging).
The pricing-hedging duality under volatility uncertainty (Vorbrink,
2014) shows that other pricing procedures lead to arbitrage.

Back
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Forward Sublinear Expectation

Definition (Forward Sublinear Expectation)
For ξ ∈ LpG(ΩT ) with p > 1 and T ≤ T̄ , we define the T -forward

sublinear expectation ÊT by ÊTt [ξ] := Y T,ξt , where Y T,ξ solves

Y T,ξt = ξ −
∫ T

t

bu(T )Zud〈B〉u −
∫ T

t

ZudBu − (KT −Kt).

I Then ÊT is a time consistent sublinear expectation and

Y T,ξt = (XT
t )−1Êt[XT

T ξ],

where XT
t := P̃t(T )

P0(T ) (Hu, Ji, Peng, and Song, 2014).

Back



Pricing Bond Options

Proposition (Bond Options).
If ϕ satisfies (1), then for t ≤ T0,

ÊT0
t [±ξ] = u±

(
t,
( Pt(Ti)
Pt(T0)

)N
i=1

)
,

where u± : [0, T0]× RN → R is the unique viscosity solution to

∂tu+G
(
σ(t, x)D2

xxuσ(t, x)′
)

= 0, u(T0, x) = ±ϕ(x)

where x = (xi)
N
i=1 and σ(t, x) := ((bt(Ti)− bt(T0))xi)

N
i=1.

Back



Pricing Convex Bond Options

Proposition (Convex Bond Options).
If ϕ is convex and satisfies (1), then for t ≤ T0,

ÊT0
t [ξ] = uσ

(
t,
( Pt(Ti)
Pt(T0)

)N
i=1

)
, −ÊT0

t [−ξ] = uσ
(
t,
( Pt(Ti)
Pt(T0)

)N
i=1

)
,

where uσ : [0, T0]× RN → R, for σ > 0, is defined by

uσ(t, x) := EP0

[
ϕ
(
(Xi

T0
)Ni=1

)]
and the process Xi = (Xi

s)t≤s≤T0
, for i = 1, ..., N , is given by

Xi
s = xi −

∫ s

t

(
bu(Ti)− bu(T0)

)
Xi
uσdBu.

Back
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Pricing a Stream of Bond Options

Proposition (Stream of Bond Options).
If ϕi satisfies (2) for all i = 0, 1, ..., N − 1, then

Ỹ ±0 = P0(T0)u±1

(
0, P0(T1)

P0(T0) ,
( P0(Tk)
P0(Tk−1) ,

P0(Tk+1)
P0(Tk)

)N−1

k=1

)
,

where u±i : [0, Ti−1]× R2(N−i)+1 → R, for i = 1, ..., N , is the unique
viscosity solution to the nonlinear PDE

∂tu+G
(
Hi(t, xi, Dxiu,D

2
xixiu)

)
= 0, u(Ti−1, xi) = f±i (xi),

where xi := (x̂i, (x̃k, x̂k)Nk=i+1) for i = 1, ..., N − 1 and xN := x̂N and

f±i (xi) := ±ϕi−1(x̂i) + x̃i+1ui+1(Ti−1, xi+1)

for i = 1, ..., N − 1 and fN (xN ) := ±ϕN−1(x̂N ).



Pricing a Stream of Bond Options

Hi(t, xi, Dxiu,D
2
xixiu) := σi(t, xi)

′D2
xixiuσi(t, xi) + 2Dxiuµi(t, xi),

σi(t, xi) := diag(xi)
(
bt(Ti)− bt(Ti−1),(

bt(Tk)− bt(Tk−1), bt(Tk+1)− bt(Tk)
)N−1

k=i

)′
,

µi(t, xi) := diag
(
σi(t, xi)

)(
0,
(
bt(Ti−1)− bt(Tk−1),

bt(Ti−1)− bt(Tk)
)N−1

k=i

)′
for i = 1, ..., N − 1 and

HN (t, xN , DxNu,D
2
xNxNu) :=

(
bt(TN )− bt(TN−1)

)2
x2
N∂

2
xNxNu.

Back



Pricing a Stream of Convex Bond Options

Proposition (Stream of Convex Bond Options).
If ϕi is convex and satisfies (2) for all i = 1, ..., N , then

Ȳ +
0 =

N∑
i=1

P0(Ti−1)uσi
(
0, P0(Ti)

P0(Ti−1)

)
,

−Ȳ −0 =

N∑
i=1

P0(Ti−1)u
σ
i

(
0, P0(Ti)

P0(Ti−1)

)
,

where uσi : [0, Ti−1]× R→ R, for i = 1, ..., N and σ > 0, is defined by

uσi (t, x̂i) := EP0
[ϕi(X

i
Ti−1

)]

and the process Xi = (Xi
s)t≤s≤Ti−1

is given by

Xi
s = x̂i −

∫ s

t

(
bu(Ti)− bu(Ti−1)

)
Xi
uσdBu.

Back
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Pricing Fixed Coupon Bonds

I The cashflows of a fixed coupon bond are given by

ξi = 1{N}(i) + 1{1,...,N}(i)(Ti − Ti−1)K (3)

for i = 0, 1, ..., N .

Proposition (Fixed Coupon Bonds).
Let ξi be given by (3) for i = 0, 1, ..., N . Then for t ≤ T0,

MtÊt[X̃] = Pt(TN ) +

N∑
i=1

Pt(Ti)(Ti − Ti−1)K = −MtÊt[−X̃].



Pricing Floating Rate Notes

I The cashflows of a floating rate note are given by

ξi = 1{N}(i) + 1{1,...,N}(i)(Ti − Ti−1)LTi−1
(Ti) (4)

for i = 0, 1, ..., N , where

LTi−1(Ti) := 1
Ti−Ti−1

( 1
Pt(Ti)

− 1).

Proposition (Floating Rate Notes).
Let ξi be given by (4) for i = 0, 1, ..., N . Then for t ≤ T0,

MtÊt[X̃] = Pt(T0) = −MtÊt[−X̃].



Pricing Interest Rate Swaps

I The cashflows of an interest rate swap are given by

ξi = 1{1,...,N}(i)(Ti − Ti−1)
(
LTi−1(Ti)−K

)
(5)

for i = 0, 1, ..., N .

Proposition (Interest Rate Swaps).
Let ξi be given by (5) for i = 0, 1, ..., N . Then for t ≤ T0,

MtÊt[X̃] = Pt(T0)− Pt(TN )−
N∑
i=1

Pt(Ti)(Ti − Ti−1)K = −MtÊt[−X̃].

Back



Swaptions

I The payoff is determined by Proposition (Interest Rate Swaps).

I The cashflows of a swaption are given by

ξi = 1{0}(i)

(
1− PT0(Tn)−

N∑
j=1

PT0(Tj)(Tj − Tj−1)K

)+

(6)

for i = 0, 1, ..., N .



Pricing Swaptions

Theorem (Swaptions).
Let ξi be given by (6) for i = 0, 1, ..., N . Then it holds

Ê[X̃] = P0(T0)uσ
(

0,
( P0(Ti)
P0(T0)

)N
i=1

)
,

−Ê[−X̃] = P0(T0)uσ
(

0,
( P0(Ti)
P0(T0)

)N
i=1

)
,

where the function uσ : [0, T0]× RN → R, for σ > 0, is defined by

uσ(t, x) := EP0

[(
1−XN

T0
−

N∑
i=1

Xi
T0

(Ti − Ti−1)K

)+]
and the process Xi = (Xi

s)t≤s≤T0
, for all i = 1, ..., N , is given by

Xi
s = xi −

∫ s

t

σu(T0, Ti)X
i
uσdBu.

Back



Caps and Floors

I The cashflows of a Cap are called caplets and are given by

ξi = 1{1,...,N}(i)(Ti − Ti−1)
(
LTi−1

(Ti)−K
)+

(7)

for i = 0, 1, ..., N .

I The cashflows of a Floor are called floorlets and are given by

ξi = 1{1,...,N}(i)(Ti − Ti−1)
(
K − LTi−1

(Ti)
)+

(8)

for i = 0, 1, ..., N .



Pricing Caps

Theorem (Caps).
Let ξi be given by (7) for i = 0, 1, ..., N . Then it holds

Ê[X̃] =

N∑
i=1

P0(Ti−1)uσi
(
0, P0(Ti)

P0(Ti−1)

)
,

−Ê[−X̃] =

N∑
i=1

P0(Ti−1)u
σ
i

(
0, P0(Ti)

P0(Ti−1)

)
,

where uσi : [0, Ti−1]× R→ R, for i = 1, ..., N and σ > 0, is defined by

uσi (t, xi) := 1
Ki

EP0 [(Ki −Xi
Ti−1

)+]

for Ki := 1
1+(Ti−Ti−1)K and the process Xi = (Xi

s)t≤s≤Ti−1
is given by

Xi
s = xi −

∫ s

t

σu(Ti−1, Ti)X
i
uσdBu.



Pricing Floors

Theorem (Floors).
Let ξi be given by (8) for i = 0, 1, ..., N . Then it holds

Ê[X̃] =

N∑
i=1

P0(Ti−1)uσi
(
0, P0(Ti)

P0(Ti−1)

)
,

−Ê[−X̃] =

N∑
i=1

P0(Ti−1)u
σ
i

(
0, P0(Ti)

P0(Ti−1)

)
,

where uσi : [0, Ti−1]× R→ R, for i = 1, ..., N and σ > 0, is defined by

uσi (t, xi) := 1
Ki

EP [(Xi
Ti−1
−Ki)

+]

and Ki and the process Xi are given as in Theorem (Caps).



In-Arrears Contracts

I Now the floating rate is reset each time the contract pays off.

I As a representative contract, we consider in-arrears swaps.

I Other in-arrears contracts can be priced in a similar way.

I The cashflows of an in-arrears swap are given by

ξi = 1{0,1,...,N−1}(i)(Ti+1 − Ti)
(
LTi(Ti+1)−K

)
(9)

for i = 0, 1, ..., N .



Pricing In-Arrears Swaps

Theorem (In-Arrears Swaps).
Let ξi be given by (9) for i = 0, 1, ..., N . Then it holds

Ê[X̃] =

N∑
i=1

P0(Ti)u
σ
i

(
0, P0(Ti−1)

P0(Ti)

)
,

−Ê[−X̃] =

N∑
i=1

P0(Ti)u
σ
i

(
0, P0(Ti−1)

P0(Ti)

)
,

where uσi : [0, Ti−1]× R→ R, for i = 1, ..., N and σ > 0, is defined by

uσi (t, xi) := EP0
[Xi

Ti−1
(Xi

Ti−1
− 1

Ki
)]

for Ki as in Theorem (Caps) and Xi = (Xi
s)t≤s≤Ti−1 is given by

Xi
s = xi −

∫ s

t

σu(Ti, Ti−1)Xi
uσdBu.

Back
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