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Abstract

Working constructively throughout, we prove that if K is an inhabited,
complete, uniformly rotund subset of a normed space X, L is a located convex
subset of X containing at least two distinct points, and d = infyck p(x,L)
exists, then there exists a strongly unique point xo, € K such that p(xe0, L) =
d. To do so, we introduce the notion of sufficient convexity for real-valued
functions on a metric space, and discuss the attainment of the infimum of
such a function when that infimum exists.
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The framework of this paper is Bishop-style constructive mathematics (BISH),
which, for all practical purposes, can be viewed as mathematics developed using
intuitionistic logic and based on an appropriate foundation such as CZF [1],
Martin-Lof type theory [8, 9], or constructive Morse set theory [5]. Thus all our
proofs embody algorithms that can be extracted for computer implementation
(see, for example, [7, 10, I1]).

We call a mapping f of a metric space X into R sufficiently convez if for each
¢ > 0 there exists & > 0 such that for all x,x’ € X with p(x,x’) > ¢, there exists
z € X such that f(z) + 0 < max{f(x),f(x’)}. Here p denotes the metric on X.

Proposition 1 The following are equivalent conditions on a mapping f of a
metric space X into R, such that u = inf f exists.

(i) T is sufficiently conver.

(ii) for each ¢ > 0 there exists 5 > 0 such that if x,x' € X, f(x) < u+ 5, and
f(x') < u+6, then p(x,x') < €.

Proof. First suppose that f is sufficiently convex. Given € > 0, pick 6 > 0
such that if x,x’ € X and p(x,x’) > ¢/2, then f(z) + 6 < max{f(x),f(x')} for



some z € X. Let & := & and consider x,x’ € X such that f(x) < p+ 8, and
f(x') < w4+ 6. If p(x,x’) > ¢/2, then there exists z € X such that

f(z) + 6 < max{f(x),f(x' )} < u+98

and therefore f(z) < u, which is absurd. Hence p(x,x') < ¢/2 < ¢.

Conversely, suppose that f satisfies condition (ii). Given € > 0, choose & as
in that condition. If x,x’ € X and p(x,x') > ¢, then max{f(x),f(x")} > n+ 0.
By the definition of p, there exists z € X such that

5
£ b
(z) < u+ 2
and hence ~
) ~
f(z) + 7 < i+ & < max{f(x), f(x')}.
Therefore, we may set & := %. O

The following result is was communicated to us by Peter Aczel many years
ago.

Proposition 2 Let X be a complete metric space, and let f be a sequentially
continuous sufficiently convexr mapping of X into R such that w = inf f exists.
Then there exists & € X such that (&) = w. Moreover, if x € X and x # &, then
f(x) > w.

Proof. In view of Proposition[I] we can construct a strictly decreasing sequence
(6n)n>1 of positive numbers such that for each n, if x,x’ € X, f(x) < u+6,, and
f(x') < w4+ dn, then p(x,x’) < 27™. For each n, pick x,, € X such that f(x,) <
p+8n. Then p(xm,xn) <27™ for all m > n, so (xn),,5; is a Cauchy sequence
in X. Since X is complete, & = limy 00 Xn exists in X. By the sequential
continuity of f, u < f(&) < w, so f(§) = u. Moreover, if x € X and p(x, ) > 0,
then, with € := %p(x, &) and & > 0 as in the definition of ‘sufficiently convex’,
there exists z € X such that

W<t < f(z) + 8 < max(f(£), f(x)} = max{p, F(x)} = f(x).

A subset L of a metric space is located if for all x € X the distance
p(x,L) :==inf{p(x,y) [y € L}
exists.

Lemma 3 Let L be an inhabited, located, and convex subset of a normed space
X. Then for all x,x" in X and t € [0,1],

p(tx + (1 —t)x/,L) < tp(x, L) + (1 —t)p(x/, L).



Proof. Given x,x’ € X, t € [0,1], and ¢ > 0, pick y,y’ € L such that

[x =yl < p(x,L) + ¢ and [|x' —y'[| < p(x/,L) + .

Then
p(tx + (1 —t)x/,L) < [ltx + (1 —t)x —ty — (1 —ty') |
<tlx—yl+ 0=t X =y
<tp(x, L)+ (1 —t)p(x',L) + te + (1 — t)e
<tp(x,L) + (1 —t)p(x/,L) +e.
Since € > 0 is arbitrary, the result follows. O

A normed space X is uniformly conver if for each ¢ > 0 there exists &
with 0 < & < 1 such that if x,y are elements of X with ||x|]| = 1 = |ly|| and
IIx —y|l > e, then H%(x—ﬁ—y)” < 6. Hilbert spaces, and L, spaces with p > 1,
are uniformly convex [4 page 322, Corollary (3.22)].

Lemma 4 Let X be a uniformly convex normed space. Then for all € >0 and
M > 0 there exists & > 0 such that if x,y are elements of X with ||x|| = [[y[| <M
and |x —y| > &, then |3 (x + )| +5 < [

Proof. Let € > 0 and consider any x,y € X such that |x|| = [y]| < M and
[x —yl| > & As & <|[x—y| < 2|x||, we infer ||| = [[y|| > €/2 > 0. Set & := 15

and compute § € (0,1) as in the definition of uniform convexity. As x/||x| and
y/|ly|| are unit vectors with

X—yH—1||x—y||>g—£
el Tyl T Mo

we obtain | |
e <.
[[]] HZ

Hence, using that ||x|| > &/2,

1
|30 w0 < 8l < el = = 80l < sl = 1= 5)

No| o

Set &:=(1—138)%. O

Lemma 5 Let X be a uniformly convex normed space, and let K C X be inhab-
ited, convex, and norm bounded. Then for any ¢ > O there exists & > 0 such that
for all x,x" € K with ||[x —X'|| > ¢ we have H%(erx’)H + 6 < max{|x]|, ||x'||}-
In particular f(x) = ||x]|, x € K, defines a sufficiently convex function.



Proof. Let ¢ > 0 and let M > 0 be a norm bound for K. For € := ¢/2 and
M compute & > 0 as in Lemma |4l Choose 5 > 0 with & < min{e/4,5/2} and
consider x,x’ € K with |[x—x’|| > ¢. Either |||x\|f||x’||’ > dor H|x||f||x’||| < 26.
In the first case note that min{||x||, [|x’||} < max{||x]|, |[x"||} — & and thus

1 : b
< 5 (max{fx], x|} + mind[lx[l, [P < max{fix], I} = 5.

1 !
Hz(x+x) >

Now assume the second case. Then by the triangle inequality,
e <|x—=x'|| <2(|x]| +8) and &< |x—x"|] <2(||x"|| +98)

implying that min{[|x||, [x'[[} > 0. Consider y := H“;,H”x’, and note that

" =yl =[xl = Ixll] <28, [yl = [Ix] <M,
and

£
Ix=yll =[x =" =[x —yll > e =26 > 5 =&.

By choice of § we have
1 = 1 -
Il > Sl yl+8 > SOl =[x —yl) +3
1 = 1
> §|\x+x’||—6+5 > E|\x+x’||+6.

As ||x|| < max{||x]||,||x’]|}, the lemma is proved. O

Theorem 6 Let X be a uniformly convex normed space, and let K C X be an
inhabited, complete, and convex set. Moreover, lety € X and assume that

w=inf{|ly — x| : x € K}

exists. Then there exists xo € K such that ||y — xo|| = p. If x" € K such that
x" # %o, then ||y —x'|| > p.

Proof. As the algebraic difference K — {y} inherits all properties from K, we
may assume that y = 0. Pick z € K. Then

= inf{[lx[| - x € K, [Ix]| < M}

where M > 0 satisfies M > ||z||. The set K := {x € K : ||x|| < M} is inhabited,
convex, bounded, and complete. Therefore, the mapping x — ||x|| on K is
sufficiently convex by Lemma |5| and has a unique minimum point xy € K by
Proposition [2] O

An immediate consequence of Theorem |§| is the proof of [4, Problem 11, p.
391], namely:



Corollary 7 Let B be a uniformly convex Banach space, and let K C B be a
closed, located, and conver set. Then each y € B has a unique closest point
xo € K, i.e. |ly—xol = ply,K), and if x' € K is such that x" # xo, then
ly =x'll > p(y,K).

A subset C of a normed space X is uniformly rotund if it is convex and for
each ¢ > 0 there exists & > 0 such that if x,x’ € C and |[x —%/|| > ¢, then
T(x+x')+z€ Cfor all z € X with [|z]| <.

Proposition 8 A normed linear space X is uniformly convez if and only if its
closed unit ball B is uniformly rotund.

Proof. Suppose that X is uniformly convex, and let ¢ > 0. Compute & > 0 for
¢ and K = B as in Lemma [5] Then for all x,x" € B such that |x —x’|| > ¢ and
any z € X with ||z|| < & it follows that

1
HZ(XJFX’HZ +8 < max{||x|, [x"[[} < 1.

1 /
< HZ(XJFX)

Hence, %(x +x') +z € B, so B is uniformly rotund.

Conversely, suppose that B is uniformly rotund, let ¢ > 0, and choose 6 < 1 as in
the definition of uniformly rotund. If x,y are unit vectors of X with ||x —y|| > e,
then ||%6(X+y)H <9, so

1+8) || Fx+y)|| = ||3(x+y) + F8(x+y)|| <1

and therefore H%(X_HJ)H <(1+8) "< 1. O

Proposition 9 Let K be an inhabited and uniformly rotund subset of a normed
space X, and L an inhabited, located, and convex subset of X that is disjoint from
K. Then f(x) = p(x, L) defines a sufficiently convex function on K.

Proof. For ¢ > 0 let & > 0 as in the definition of ‘uniform rotundity’ for K, and
let & :=5/2. Consider x,x’ € K such that [[x —x[| > e. Let u:= +(x+x') and
fix v € L such that ||[v—u| < p(u,L) 4+ &. Note that ||[v—u|| > §, because by
choice of 8, if we had ||v —u|| < §, then v =u+ (v —u) € K which is absurd
since K and L are disjoint. Let

z:=u+ v—u).

Tl
v —uf
Then ||z —u|| = 3, and therefore z = u + (z —u) € K. Recalling Lemma 3| we
have

o
v—z||+& = (1—) [lv—ul+&

[u—v]
v—ul—& < flu) < max{f(x),f(x")}

f(z)+ &

IN



O

To see that in Proposition [9] we cannot replace uniform rotundity by mere
convexity, take X to be the Euclidean plane R?, K ={(a,b) € R? : a < 0}, and
L={(a,b) € R?:a > 1}; we have

inf p(x, 1) =1=[(0,b) = (1, b)]

for all b € R, so, in view of Proposition x — p(x, L) is not sufficiently convex
on K.
Recall here Bishop’s Lemma [6, Proposition 3.1.1]:

Let Y be an inhabited, complete, located subset of a metric space
X. Then for each x € X there exists y € Y such that if x # y, then
p(x,Y) > 0.

Theorem 10 Let K be an inhabited, complete, and uniformly rotund subset of
a normed space X, and L an inhabited, located, and convex subset of X that is
disjoint from K. Suppose also that d = infycx p(x,L) exists. Then there exists
& € K such that (i) p(& L) = d and (i) p(x,L) > d for all x € K with x # &.
If, in addition, L is complete, then there exists y € L such that if & # vy, then
d>o0.

Proof. By Proposition |§|, f(x) = p(x, L) defines a sufficiently convex, function
on K. Since K is complete and d exists, Proposition [2] produces & € K with
properties (i) and (ii). If also L is complete, then we complete the proof by
invoking Bishop’s Lemma. O

Lemma 11 Let Y be an inhabited and convex subset of a Hilbert space H, and
a a point of H such that d = p(a,Y) exists. Then there exists b € Y such that
lla —b|| = d. Moreover,

(i) la —yl|l > d whenevery € Y andy #b;
(ii) (a —b,b—1y) >0, and therefore (a —b,a—y) > d?, for ally €Y.

Proof. This is a well-known result on Hilbert space. For instance Lemma
1 in [2] proves the existence of b € Y such that ||a —b|| = d and (ii) holds.
Conclusion (i) follows from (ii) since for ally € Y

la—yll* = [la=b+b—y|* = [la=b|*+[[b—y[*+2{a = b, b —y) > d*+[b—y|>.
0

Theorem 12 Let K be an inhabited, closed, and uniformly rotund subset of a
Hilbert space H, and L an inhabited, closed, located, and convex subset of H that
is disjoint from K. Suppose also that d = infycx p(x, L) exists. Then there exist
Xoo € K and Yoo € L such that ||Xeo — Yool = d. Moreover,



(i) [[x —y|l > d whenever x € K and y € L and either x # Xoo 07'Y # Yoo,

(i) (Xco — Yooy Yoo —Y) > 0, and therefore (Xoo — Yooy Xeo —Y) > d2, for all
yeL.

Proof. By Theorem there exists xoo € K such that d = p(xe,L). By
Lemma [11] there exists Yoo € L such that |[Xeo — Yoo|| = P(Xo0, L) and properties
(i) and (ii) hold. O

Note that also in Theorem [I2] we cannot replace uniformly rotundity by
mere convexity: Consider H = R? and K = {(a,b) € R?> : b > e® + 1} and
L={(a,b) €R?:b < —e*—1}. Then d = 2, but there isnox € Kandy € L
such that ||x —y|| = 2.

Theorem leads us to a new constructive separation theorem where the
separating linear functional is constructed as the difference of the points of
closest distance.

Theorem 13 Let K be an inhabited, closed, located, and uniformly rotund sub-
set of a Hilbert space H, and L an inhabited, closed, located, and convex subset
of H. Suppose that d = infycx p(x,L) exists and is positive, let xoo € K and
Yoo € L be as in Theorem[IZ, and let p = Xoo — Yoo- Then

(p,x—y) >d? forallx €K andy e L.

The normed linear functional u(x) = (d~'p,x), x € H, satisfies |[ul| =1 and
u(x) > u(y) +d for allx € K and y € L. In particular u(xs) < u(x) for all
x € K, where W(Xoo) < W(X) if X # Xoo, and W(Yoo) > u(y) for ally € L.

Proof. Construct xo, € K and yo, € L as in Theorem and let
P =Xoo — Yoo-
Then, by Theorem for ally € Y we have
(P Xoo = Y) = (Xoo — Yoo, Xoo —Y) > d?.

On the other hand, since K is located Lemma, provides the existence of a
unique b € K such that p(Yeo, K) = [[Yoso — bl AS P(Yoo, K) = d = |[Yoo — Xool|
it follows that indeed b = xo, and thus by Lemma [T1] that

(Yoo — Xooy Xeo —X) >0 (1)
for all x € K. Hence, for x € K and y € L,

Pyx=1Y) = (PyXeo —Y) + (Py X — Xoo)
> d? + (X0 — Yooy X — Xoo)
=d*+ (Yoo — Xooy Xoo — X) > d?.



As regards the properties of u, note that u(xs) < u(x) for all x € K follows
from (1) and u(yso) > u(y) for all y € L is shown in Theorem [12] (ii). Let x € K
such that x # Xo,. Then by uniform rotundity of K there is & > 0 such that
3 (Xoo +x)+2z € K for all z € H with ||z|] < 8. Let z:= —5p. Then |z|| = and
therefore %(xoo +x) +z € K. It follows that u(%(xm +x)+2) > u(Xe), and
thus u(x) + 2u(z) > u(xe). As u(z) = —%(p,p) = —b6 < 0, we conclude that
u(x) > u(xeo)- O

By Theorem we may construct supporting hyperplanes Px := {x € H :
u(x) = u(xeo)} of K and Pp := {x € H : u(x) = u(ye)} of L, respectively,
where Py intersects with K in the unique point x,, and Pp instersects with L
in Yoo. The uniqueness of the intersection point x of Px and K is strong, in
the sense that any point x € K distinct from x is bounded away from P since
u(x) > u(xeo)-

In trying to apply the foregoing theorems, it is natural to think of the case
where the uniformly rotund set K is compact. In that case, if K is nontrivial,
Corollary [15| below shows that H is finite-dimensional.

Proposition 14 Let X be a normed space, and S be a uniformly rotund subset
of X that contains two distinct points. Then S contains an open ball of positive
radius.

Proof. Let a,b be two distinct points of S. There exists & > 0 such that if
%y € S and [[x—y| > [la—Db]|, then J(x +y) +z € S for all z € X with
|lz]] < 8. Consider the open ball B(%(a—kb), ) of radius & with center %(a—kb).
Ifze B(%(aer),é), then ||z — %(aJr b)|| < 6 and thus

z=13(a+b)+(z—I(a+b)) €S,

SO B(%(a +b), &) is the required ball. O

Corollary 15 A normed space that has a totally bounded and uniformly rotund
subset which contains two distinct points is finite-dimensional.

Proof. This follows from the preceding proposition and [6, Proposition 4.1.13].
O
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