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1 Introduction

Let (Ω,F ,P) be atomless and let X ⊂ L0 := L0(Ω,F ,P) be a vector space

containing the constants. A map ρ : X → R is a convex risk measure when the

following conditions are satisfied:

(i) monotonicity: ρ(X) ≥ ρ(Y ) for X, Y ∈X with X ≤ Y ;

(ii) convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all X,Y ∈X and

λ ∈ [0, 1];

(iii) cash additivity: ρ(X +m) = ρ(X)−m for X ∈X and m ∈ R.

Note: it is possible here to replace axiom (iii) by the following weaker notion:

(iii’) cash coercivity: ρ(−m) −→ +∞ when m ∈ R tends to +∞.
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When ρ is law-invariant,

ρ(X) = ρ(X̃) whenever X and X̃ have the same law under P,

it makes sense to estimate ρ(X) by means of a Monte Carlo procedure or from a

sequence of historical data.

Let

M (X ) := {P ◦X−1 |X ∈X }

Law invariance of a risk measure ρ : X → R is equivalent to the existence of a

map

Rρ : M (X )→ R

such that

(1) ρ(X) = Rρ(P ◦X−1), X ∈X .

This map Rρ will be called the risk functional associated with ρ.
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When µ̂n estimates the law µ = P ◦X−1 of X then

ρ̂n := Rρ(µ̂n)(2)

is an estimator for ρ(X). A typical choice is the empirical distribution of a

sequence X1, . . . , Xn of historical observations or Monte Carlo simulations

µ̂n = m̂n :=
1

n

n∑
k=1

δXk

Questions:

• Consistency: do we have ρ̂n → ρ(X) as n ↑ ∞?

• Continuity: is µ 7→ Rρ(µ) continuous?

• Asymptotic analysis: what can be said about the asymptotic distribution

of the estimation error ρ̂n − ρ(X)?

• Robustness: is the law of ρ̂n stable with respect to small perturbations of

the law generating the X1, . . . , Xn?
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Cont, Deguest, and Scandolo (2010):

When ρ is coherent, the risk functional Rρ cannot be qualitatively robust in the

sense of Hampel (1971). However, RV@R essentially is qualitatively robust.

Sounds like a strong argument in favor of V@R and against coherent risk

measures.

But let’s review the argument.

• The argument is weak when compared to the main argument againt V@R:

V@R creates toxic incentives.

• By Hampel’s theorem, qualitative robustness of Rρ implies that Rρ is

continuous with respect to weak convergence in M1(R).

Since the compactly supported probability measures are dense in M1(R)

with respect to weak convergence, Hampel’s theorem thus implies that Rρ(µ)

must be insensitive to the tail behavior of µ.

• ρ(X) = −E[X ] is a coherent risk measure and thus corresponds to a

non-robust risk functional. But ρ(X) = −E[X ] is, e.g., the most common

and natural actuarial risk measure.
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• Hampel’s terminology of qualitative robustness generates a sharp division of

risk functionals into those that are called “robust” and others that are called

“not robust”.

robust 

non-robust 

But, e.g., estimating the expected value should be “more robust” than

estimating variance.
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Can one thus define a refined notion of robustness that produces a picture like

this one:

Hampel robust 

By such a refined notion of robustness one can also try to capture the natural

tradeoff between robustness and tail-sensitivity

7



Such a refined version of robustness was introduced in Krätschmer, A.S., and

Zähle (2012), and here we apply it to, and explain it at the hand of, law-invariant

convex risk measures (Krätschmer, A.S., and Zähle, 2013)
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Such a refined version of robustness was introduced in Krätschmer, A.S., and

Zähle (2012), and here we apply it to, and explain it at the hand of, law-invariant

convex risk measures (Krätschmer, A.S., and Zähle, 2014)

The key is to replace metrics for the weak topology in Hampel’s robustness with

metrics for the ψ-weak topology on

M ψ
1 := M ψ

1 (R) :=
{
µ ∈M1(R)

∣∣ ∫ ψ dµ <∞
}

where ψ : R→ [0,∞) is a continuous weight function satisfying ψ ≥ 1 outside

some compact set.

Typical example: ψ(x) = |x|p
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We have

µn −→ µ ψ-weakly :⇐⇒
∫
f dµn −→

∫
f dµ ∀ continuous f with |f | ≤ c(1 + ψ)

⇐⇒ µn −→ µ weakly and

∫
ψ dµn −→

∫
ψ dµ

A suitable metric is

dψ(µ, ν) := dProh(µ, ν) +
∣∣∣ ∫ ψ dµ−

∫
ψ dν

∣∣∣
The ψ-weak topology coincides with the weak topology iff ψ is bounded.
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2 Preliminaries

The choice X := L∞ := L∞(Ω,F ,P) is not suitable when dealing with possibly

unbounded risks. Better: Orlicz spaces or Orlicz hearts (S. Biagini and Frittelli

(2008), Cheridito and Li (2009)).

A Young function will be a left-continuous, nondecreasing convex function

Ψ : R+ → [0,∞] such that 0 = Ψ(0) = limx↓0 Ψ(x) and limx↑∞Ψ(x) =∞.

The Orlicz space associated with Ψ is

LΨ := LΨ(Ω,F ,P) =
{
X ∈ L0 |E[ Ψ(c|X|) ] <∞ for some c > 0

}
.

It is a Banach space when endowed with the Luxemburg norm,

‖X‖Ψ := inf {λ > 0 |E[ Ψ(|X|/λ) ] ≤ 1} .

The Orlicz heart is defined as

HΨ := HΨ(Ω,F ,P) =
{
X ∈ L0 |E[ Ψ(c|X|) ] <∞ for all c > 0

}
Cheridito and Li (2009): finite risk measures on HΨ are continuous for ‖ · ‖Ψ
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For a finite Young function Ψ,

L∞ ⊂ HΨ ⊂ LΨ ⊂ L1

and these inclusions may all be strict. In fact, the identity HΨ = LΨ holds if and

only if Ψ satisfies the so-called ∆2-condition

(3) there are C, x0 > 0 such that Ψ(2x) ≤ CΨ(x) for all x ≥ x0.

The ∆2-condition is clearly satisfied when specifically Ψ(x) = xp/p for some

p ∈ [1,∞). In this case, HΨ = LΨ = Lp and ‖Y ‖Ψ = p−1/p‖Y ‖p.

In the sequel, Ψ will always denote a finite Young function
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3 Consistency

For a distortion risk measure ρ, the estimator ρ̂n = Rρ(m̂n) has the form of an

L-statistic and results by van Zwet (1980), Gilat and Helmers (1997), and

Tsukahara (2013) can be applied.

Our following result works for general law-invariant convex risk measures:

Theorem 1. Suppose that ρ is a law-invariant convex risk measure on HΨ and

X1, X2, . . . is a stationary and ergodic sequence of random variables with the

same law as X ∈ HΨ. Then ρ̂n is a stronly consistent estimator in the sense that

ρ̂n = Rρ(m̂n) = Rρ

( 1

n

n∑
k=1

δXk

)
−→ ρ(X) P-a.s.
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It follows from Birkhoff’s ergodic theorem that, P-a.s.,

m̂n −→ µ := P ◦X−1 Ψ(| · |)-weakly

So Theorem 1 would have followed if it were possible to establish the continuity

of ν 7→ Rρ(ν) with respect to the Ψ(| · |)-weak topology. But this is not possible

unless Ψ satisfies the ∆2-condition:
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4 Continuity

When Ψ is a Young function, then Ψ(| · |) is a weight function, and we will simply

write M Ψ
1 in place of M

Ψ(|·|)
1 . We will also use the term Ψ-weak convergence

instead of Ψ(| · |)-weak convergence etc. We recall the notation

M (HΨ) =
{
P ◦X−1 |X ∈ HΨ

}
for the class of all laws of random variables X ∈ HΨ.

Remark 1. The identity M (HΨ) = M Ψ
1 holds if and only if Ψ satisfies the

∆2-condition (3).
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Theorem 2. For a finite Young function Ψ the following conditions are

equivalent.

(a) For every law-invariant convex risk measure ρ on HΨ, the map

Rρ : M (HΨ)→ R is continuous for the Ψ-weak topology.

(b) Ψ satisfies the ∆2-condition (3).

15



Theorem 2. For a finite Young function Ψ the following conditions are

equivalent.

(a) For every law-invariant convex risk measure ρ on HΨ, the map

Rρ : M (HΨ)→ R is continuous for the Ψ-weak topology.

(b) Ψ satisfies the ∆2-condition (3).

Proof is based on the following Skorohod representation result for ψ-weak

convergence:

Theorem 3. For any finite Young function Ψ the following two conditions are

equivalent.

(a) A sequence (µn) in M (HΨ) converges Ψ-weakly to some µ0 if and only if

there exists a sequence (Xn)n∈N0 in HΨ such that Xn has law µn for each

n ∈ N0 and ‖Xn −X0‖Ψ → 0.

(b) Ψ satisfies the ∆2-condition (3).
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Idea of proof of Theorem 2:

(b)⇒(a): Suppose Ψ satisfies the ∆2-condition and ρ is a convex risk measure

on HΨ with associated map Rρ. Let (µn) be a sequence such that µn → µ0

Ψ-weakly. By Theorem 3 there exists a sequence (Xn)n∈N0 in HΨ such that each

Xn has law µn and such that ‖Xn −X0‖Ψ → 0. But ρ is continuous with respect

to ‖ · ‖Ψ and so

Rρ(µn) = ρ(Xn) −→ ρ(X0) = Rρ(µ0),

which proves the implication (b)⇒(a).

(a)⇒(b): Use utility-based shortfall risk,

ρ(X) := inf{m ∈ R : E[ `(−X −m) ] ≤ x0},

for

`(x) = Ψ(8x+)

together with the fact that there exists Y ≥ 0 such that E[ Ψ(Y ) ] <∞ and

E[ Ψ(2Y ) ] =∞ to construct Xn such that P ◦X−1
n → δ0 but ρ(Xn) 6→ ρ(0).
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One might ask whether Rρ is even continuous with respect to a weaker topology.

For instance, this would be the case when ρ can be extended to a law-invariant

convex risk measure on a larger Orlicz heart HΦ ⊃ HΨ.

To address this question, let ρ be a law-invariant convex risk measure on L∞ and

let

(4) ρ : L1 −→ R ∪ {+∞}

denote the unique extension of ρ that is convex, monotone, cash invariant, and

lower semicontinuous with respect to the L1-norm (Filipovic and Svindland,

2013). When ρ is finite on some Orlicz heart HΨ, it will be a convex risk measure

and hence be continuous on HΨ with respect to the corresponding Luxemburg

norm
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Theorem 4. Suppose that ρ is a law-invariant convex risk measure on L∞. Let

furthermore Ψ be a Young function satisfying the ∆2-condition (3). Then the

following conditions are equivalent.

(a) ρ is finite on HΨ.

(b) The map Rρ : M (HΨ)→ R is continuous for the Ψ-weak topology.

(c) The map Rρ : M (L∞)→ R is continuous for the Ψ-weak topology.

(d) If (Xn) is a sequence in L∞ with ‖Xn‖Ψ → 0, then ρ(Xn)→ ρ(0).
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5 Differentiability, functional detal method, and

central limit theorems

When ρ is coherent, one can establish a weak form of Hadamard differentiability

of the map Rρ (when defined on a suitable subspace of M ψ
1 ) and, under

additional technical assumptions, obtain results such as the following one.

Suppose that µ̂n is a sequence of random measures such that µ̂n → µ and

1

αn
(µ̂n − µ) −→ β weakly

for some random signed measure β and a sequence αn ↑ ∞. Then

1

αn
(Rρ(µ̂n)−Rρ(µ)) −→ ∇Rρ(µ;β) weakly,

where ∇Rρ(µ;β) is a Hadamard-type derivative of Rρ at µ in direction β. See

Krätschmer, A.S., and Zähle (2013) for details.
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6 Qualitative and comparative robustness

Ω = RN, Xi(ω) = ω(i) for ω ∈ Ω and i ∈ N, and F := σ(X1, X2, . . . ). For any

Borel probability measure µ on R, we will denote

Pµ := µ⊗N

Definition 1 (Qualitative robustness). Suppose N ⊂M1 is a set, dA is a metric

on N , and dB is a metric on M1. Then Rρ is called robust on N with respect

to dA and dB if for all µ ∈ N and ε > 0 there exists δ > 0 and n0 ∈ N such that

(5) ν ∈ N , dA(µ, ν) ≤ δ =⇒ dB
(
Pµ ◦ ρ̂ −1

n ,Pν ◦ ρ̂ −1
n ) ≤ ε for n ≥ n0.

In Hampel’s classical notion of qualitative robustness: N = M1

and dA and dB = Lévy metric or Prohorov metric (Mizera, 2010)
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Here we take for dA:

dψ(µ, ν) = dProh(µ, ν) +
∣∣∣ ∫ ψ dµ−

∫
ψ dν

∣∣∣
and

dB = dProh

Definition 2. Let ψ be a weight function. A set N ⊂M ψ
1 is called uniformly

ψ-integrating when

(6) lim
M→∞

sup
ν∈N

∫
{ψ≥M}

ψ dν = 0.

When ψ is bounded, every set N ⊂M1 is uniformly ψ-integrating.

Definition 3. Let ψ be a weight function and M ⊂M ψ
1 . A risk functional Rρ

is called ψ-robust on M when Rρ is robust with respect to dψ and dProh on every

uniformly ψ-integrating set N ⊂M .
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Proposition 1. Let Rρ be the risk functional associated with a law-invariant

convex risk measure ρ on L∞. When ψ : R+ → (0,∞) is a nondecreasing function

such that Rρ is ψ(| · |)-robust on M (L∞), then ψ has at least linear growth:

lim inf
x↑∞

ψ(x)

x
> 0

The preceding proposition is a strengthening of the main result of Cont, Deguest,

and Scandolo (2010). It also allows us to essentially limit the analysis of the

ψ-robustness of risk functionals to weight functions ψ(x) = Ψ(|x|) arising from a

Young function Ψ. In this context, we have the following result.

Theorem 5. For a finite Young function Ψ, the following conditions are

equivalent.

(a) For every law-invariant convex risk measure ρ on HΨ, Rρ is Ψ-robust on

M (HΨ).

(b) Ψ satisfies the ∆2-condition (3).
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As in Theorem 4, HΨ may not be the “canonical” space for ρ in the sense that ρ

can be extended to a larger space. Such a situation has an impact on the

robustness of ρ as explained in the next result. By ρ we denote again the

extension (4).

Theorem 6. Let Ψ be a Young function satisfying the ∆2-condition (3). For a

law-invariant convex risk measure ρ on L∞, the following conditions are

equivalent.

(a) Rρ is Ψ-robust on M Ψ
1 .

(b) Rρ is Ψ-robust on M (L∞).

(c) ρ is finite on HΨ.

The most important aspect of Theorem 6 is that it allows us to study the

robustness properties of a given risk functional on M (L∞) rather than on its full

domain. Since any risk functional that arises from a law-invariant convex risk

measure is defined on M (L∞), we can thus compare two risk functionals in

regard to their degree of robustness.
23



Definition 4 (Comparative robustness). We will say that ρ1 is at least as robust

as ρ2 if the following implication holds. When Ψ is a Young function satisfying

the ∆2-condition (3), and Rρ2 is Ψ-robust on M (L∞), then Rρ1 is Ψ-robust on

M (L∞). When, in addition, there is a Ψ such that Rρ1 is Ψ-robust on M (L∞)

but Rρ2 is not, then we will say that ρ1 is more robust than ρ2.

We immediately get the following corollary.

Corollary 1. For two law-invariant convex risk measures ρ1 and ρ2 on L∞, the

following conditions are equivalent.

(a) ρ1 is at least as robust as ρ2.

(b) When the Young function Ψ satisfies the ∆2-condition (3) and ρ2 is finite on

HΨ, then ρ1 is also finite on HΨ.
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Definition 5 (Index of qualitative robustness). Let ρ be a law-invariant convex

risk measure on L∞. The associated index of qualitative robustness is defined as

iqr(ρ) =
(

inf
{
p ∈ (0,∞)

∣∣Rρ is | · |p-robust on M (L∞)
})−1

It follows from Proposition 1 that any law-invariant convex risk measure ρ

satisfies iqr(ρ) ≤ 1. Thus, Theorem 6 implies that

(7) iqr(ρ) =
(

inf
{
p ∈ [1,∞) | ρ is finite on Lp

})−1

.
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7 Index of qualitative robustness for distortion

risk measures

We now turn to the important example class of distortion risk measures defined

as

(8) ρg(X) :=

∫ 0

−∞
g(FX(y)) dy −

∫ ∞
0

(
1− g(FX(y)

)
dy

where FX denotes the distribution function of X, and g is a nondecreasing

function such that g(0) = 0 and g(1) = 1. Then ρg is a law-invariant convex risk

measure on L∞ if and only if g is concave. In this case, ρg is even coherent and

can be represented as

(9) ρg(X) = g(0+) ess sup(−X) +

∫ 1

0

V@Rt(X)g′+(t) dt.
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Proposition 2. Suppose that g is concave and continuous. Then, for p ∈ [1,∞)

and 1
p + 1

q = 1, the extension ρg of ρg is finite on Lp if and only if g′+ ∈ Lq(0, 1).

In particular,

iqr(ρg) =
q∗ − 1

q∗
where q∗ = sup

{
q ≥ 1

∣∣∣ ∫ 1

0

(g′+(t))q dt <∞
}
.

Example 1 (Average Value at Risk). Average Value at Risk at level α ∈ (0, 1),

AV@Rα, is given in terms of the concave distortion function g1(t) = (t/α) ∧ 1.

AV@Rα is also called Expected Shortfall, Conditional Value at Risk, or TailVaR.

Since g′1 is bounded, it follows from Proposition 2 that iqr(AV@Rα) = 1.

Example 2 (MINMAXVAR). MINMAXVAR is defined in terms of the concave

distortion function

gλ,γ(t) = 1− (1− t
1

1+λ )1+γ ,

where λ and γ are nonnegative parameters. An easy computation shows that

g′λ,γ(t) ∼ c · t−
λ

1+λ as t ↓ 0, and so we have iqr(MINMAXVAR) = 1
1+λ .
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8 More on qualitative robustness

Definition 6. A set N ⊂M ψ
1 has the uniform Glivenko–Cantelli (UGC)

property if m̂n satisfies a weak LLN w.r.t. dψ, uniformly over Pν with ν ∈ N .

That is, for all ε > 0 and δ > 0 there is n0 ∈ N such that

(10) sup
ν∈N

Pν
[
dψ(ν, m̂n) ≥ δ

]
≤ ε for n ≥ n0.

Recall that N ⊂M ψ
1 is called uniformly ψ-integrating when

lim
M↑∞

sup
ν∈N

∫
{ψ≥M}

ψ dν = 0.

Theorem 7. If N is uniformly ψ-integrating, then it has the UGC property.

Conversely, if N has the UGC property and the medians of ψ under ν ∈ N are

bounded, then N is uniformly ψ-integrating.
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Proof: It is known that M1 has the UGC property for the Prohorov metric

(Mizera, 2010). All one therefore needs to show is

(11) sup
ν∈N

Pν
[ ∣∣∣ 1
n

n∑
i=1

ψ(Xi)−
∫
ψ dν

∣∣∣ ≥ δ ] ≤ ε for n ≥ n0.

Chung (1951) showed that such a LLN holds if N is uniformly ψ-integrating. He

showed moreover that the validity of (11) requires that N is uniformly

ψ-integrating in the case the medians of ψ under ν ∈ N are bounded.

Let us give a new argument for

N is uniformly ψ-integrating =⇒ (11)

By Markov’s inequality, (11) will follow once we have

(12) lim
n→∞

sup
ν∈N

Eν
[ ∣∣∣ 1
n

n∑
i=1

ψ(Xi)− Eν
[
ψ(X1)

]∣∣∣ ] = 0.

The fact that N is uniformly ψ-integrating implies compactness of

K := {ν ◦ ψ−1 | ν ∈ N }

w.r.t. the | · |-weak topology in M
|·|
1 ([0,∞)).
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Further, notice that (12) is implied by

(13) lim
n→∞

Fn(π) = 0 uniformly in π ∈ K

where

Fn(π) := Eπ
[ ∣∣∣ 1
n

n∑
i=1

Xi − Eπ
[
X1

]∣∣∣ ]
In sequel, we will show that (13) holds. By Dini’s lemma and the compactness of

K , for (13) to be true it suffices to show that

(a) Fn ↘ 0 pointwise and

(b) Fn is continuous for the | · |-weak topology.

As for (a), 1
n

∑n
i=1Xi is a backwards (reversed) Pπ-martingale and so∣∣∣ 1

n

n∑
i=1

Xi − Eπ[X1]
∣∣∣

is a backwards Pπ-submartingale converging to 0. This implies (a).
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For (b), we need to show now that each Fn is continuous for the | · |-weak

topology. Let (πk)k∈N0
such that πn → π0 | · |-weakly; in particular

(14)

∫
xπk(dx)→

∫
xπ0(dx).

We will show Fn(πk)→ Fn(π0) as k →∞. To prove the latter convergence, we

define functions fn : [0,∞)× [0,∞)n → [0,∞) by

fn(t, x1, . . . , xn) :=
∣∣∣ 1
n

n∑
i=1

xi − t
∣∣∣.

For each t ∈ [0,∞) fixed, the function fn(t, ·) can be bounded by C(1 + ψ̃) where

ψ̃n(x1, . . . , xn) := 1
n

∑n
i=1 xi. Hence, for each t ∈ [0,∞) the map

π 7−→
∫
fn(t, ·) dπ⊗n = Eπ

[ ∣∣∣ 1
n

n∑
i=1

Xi − t
∣∣∣ ]

is continuous for the | · |-weak topology. Thus, for t := Eπ0

[
X1

]
we obtain

(15) Eπk
[ ∣∣∣ 1
n

n∑
i=1

Xi − Eπ0

[
X1

]∣∣∣ ] −→ Eπ0

[ ∣∣∣ 1
n

n∑
i=1

Xi − Eπ0

[
X1

]∣∣∣ ].
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Now, combining the inequality

|Fn(πk)− Fn(π0)|

≤
∣∣∣∣Fn(πk)− Eπk

[ ∣∣∣ 1
n

n∑
i=1

Xi − Eπ0

[
X1

]∣∣∣ ]∣∣∣∣+

∣∣∣∣Eπk[ ∣∣∣ 1n
n∑
i=1

Xi − Eπ0

[
X1

]∣∣∣ ]− Fn(π0)

∣∣∣∣
≤

∣∣∣ ∫ xπk(dx)−
∫
xπ0(dx)

∣∣∣+

∣∣∣∣Eπk[ ∣∣∣ 1n
n∑
i=1

Xi − Eπ0

[
X1

]∣∣∣ ]− Fn(π0)

∣∣∣∣
with (14) and (15) yields Fn(πk)→ Fn(π0).
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Consider robustness for a general estimator of the form

T̂n = T (m̂n)

for some statistical functional T : M → R.

Definition 7 (ψ-robustness). Let M be a subset of M ψ
1 . T is called ψ-robust at

µ in M if for each ε > 0 and every uniformly ψ-integrating set N ⊂M with

µ ∈ N there are δ > 0 and n0 ∈ N such that

ν ∈ N , dψ(µ, ν) ≤ δ =⇒ dProh(Pµ ◦ T̂−1
n , Pν ◦ T̂−1

n ) ≤ ε for n ≥ n0.

Theorem 8 (Hampel’s theorem for the ψ-weak topology). When T : M → R is

ψ-weakly continuous at µ ∈M , then T is ψ-robust at µ in M .
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Proof: Must show that for every ε > 0 there are some δ > 0 and n0 ∈ N such

that for all ν ∈ N and n ≥ n0,

dψ(µ, ν) ≤ δ =⇒ dProh(Pµ ◦ T̂−1
n ,Pν ◦ T̂−1

n ) ≤ ε

So, let ε > 0 be fixed. We look for δ > 0 and n0 ∈ N such that for all n ≥ n0

dψ(µ, ν) ≤ δ =⇒ dProh(δT (µ),Pν ◦ T̂−1
n ) ≤ ε

2
,

where δT (µ) is the Dirac measure at T (µ). Strassen’s theorem implies

Pν
[∣∣T (µ)− T (m̂n)

∣∣ ≤ ε

2

]
≥ 1− ε

2
=⇒ dProh(δT (µ),Pν ◦ T̂−1

n ) ≤ ε

2

Thus, it suffices to find some δ > 0 and n0 ∈ N such that for all ν ∈ N and

n ≥ n0

(16) dψ(µ, ν) ≤ δ =⇒ Pν
[∣∣T (µ)− T (m̂n)

∣∣ ≤ ε

2

]
≥ 1− ε

2
.

Since T is ψ-continuous at µ there is δ > 0 such that dψ(µ, m̂n) ≤ 2δ implies

|T (µ)− T (m̂n)| ≤ ε
2 .
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Thus, in order to obtain (16), let us fix any ν ∈ N satisfying dψ(µ, ν) ≤ δ. In

view of the triangular inequality dψ(µ, m̂n) ≤ dψ(ν, m̂n) + dψ(µ, ν) we have

Pν
[
dψ(ν, m̂n) ≤ δ

]
≤ Pν

[
dψ(µ, m̂n) ≤ δ + dψ(µ, ν)

]
≤ Pν

[
dψ(µ, m̂n) ≤ 2δ

]
≤ Pν

[
|T (µ)− T (m̂n)| ≤ ε

2

]
.

Now, (16) is an immediate consequence of the UGC property of (N , d).
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Thus, in order to obtain (16), let us fix any ν ∈ N satisfying dψ(µ, ν) ≤ δ. In

view of the triangular inequality dψ(µ, m̂n) ≤ dψ(ν, m̂n) + dψ(µ, ν) we have

Pν
[
dψ(ν, m̂n) ≤ δ

]
≤ Pν

[
dψ(µ, m̂n) ≤ δ + dψ(µ, ν)

]
≤ Pν

[
dψ(µ, m̂n) ≤ 2δ

]
≤ Pν

[
|T (µ)− T (m̂n)| ≤ ε

2

]
.

Now, (16) is an immediate consequence of the UGC property of (N , d).

Theorem 9 (Converse of Hampel’s theorem for the ψ-weak topology). Suppose

that T : M → R is a statistical functional. Let µ ∈M and δ0 > 0 be given, and

suppose that T is weakly consistent at each ν in M with dψ(ν, µ) ≤ δ0. When T

is ψ-robust at µ in M , then T : M → R is ψ-weakly continuous at µ.
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9 Conclusion

We have introduced a refined version of qualitative robustness of statistical

functionals. For the risk functional associated with a law-invariant convex risk

measure, robustness can be formulated within the context of Young functions Ψ

and it holds if and only if the risk measure is finite on the corresponding Orlicz

space—provided that Ψ satisfies the ∆2-condition. There is still work to be done

for the case in which Ψ does not satisfy the ∆2-condition. Also, how can one

better describe the tradeoff between robustness and tail sensitivity?
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Thank you
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