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1 Introduction

Let (9,.#,P) be atomless and let 2" C LY := LY%(Q,.%#,P) be a vector space
containing the constants. A map p: 2 — R is a convex risk measure when the
following conditions are satisfied:

(i) monotonicity: p(X) > p(Y) for X, Y € 2" with X <Y

(ii)) convexity: p(AX + (1 = N)Y) < Ap(X)+ (1 = A)p(Y) for all X,Y € £ and
A e 0,15

(iii) cash additivity: p(X +m) = p(X) —m for X € 2 and m € R.

Note: it is possible here to replace axiom (iii) by the following weaker notion:

(iii’) cash coercivity: p(—m) — +o0o when m € R tends to +oo.



When p is law-invariant,

~

p(X) = p(X) whenever X and X have the same law under P,

it makes sense to estimate p(X) by means of a Monte Carlo procedure or from a
sequence of historical data.

Let
ME) ={Po X1 Xe2)

Law invariance of a risk measure p : 2 — R is equivalent to the existence of a

map
Ky M) —R
such that
(1) p(X)=%,PoX""), XeZ.

This map #, will be called the risk functional associated with p.



When Ji,, estimates the law =P o X! of X then

(2) lb\n ‘= %p(ﬂn)

is an estimator for p(X). A typical choice is the empirical distribution of a

sequence X1, ..., X, of historical observations or Monte Carlo simulations
mn
AN AN 1
HUn = My = — § 5Xk
n
k=1
Questions:

e Consistency: do we have p,, — p(X) as n T oo?
e Continuity: is y — Z,(p) continuous?

e Asymptotic analysis: what can be said about the asymptotic distribution

of the estimation error p, — p(X)?

e Robustness: is the law of p,, stable with respect to small perturbations of

the law generating the X4,...,X,7
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Cont, Deguest, and Scandolo (2010):
When p is coherent, the risk functional &%, cannot be qualitatively robust in the
sense of Hampel (1971). However, Zvagr essentially is qualitatively robust.

Sounds like a strong argument in favor of V@R and against coherent risk

measures.
But let’s review the argument.

e The argument is weak when compared to the main argument againt VQR:
V@R creates toxic incentives.

e By Hampel’s theorem, qualitative robustness of &%, implies that #,, is
continuous with respect to weak convergence in .Z;(R).

Since the compactly supported probability measures are dense in .1 (R)
with respect to weak convergence, Hampel’s theorem thus implies that %, ()
must be insensitive to the tail behavior of pu.

e p(X)=—E[X] is a coherent risk measure and thus corresponds to a
non-robust risk functional. But p(X) = —E[ X ] is, e.g., the most common

and natural actuarial risk measure.



e Hampel’s terminology of qualitative robustness generates a sharp division of
risk functionals into those that are called “robust” and others that are called

“not robust”.

non-robust

But, e.g., estimating the expected value should be “more robust” than

estimating variance.



Can one thus define a refined notion of robustness that produces a picture like

this one:

Hampel robust

By such a refined notion of robustness one can also try to capture the natural

tradeofl between robustness and tail-sensitivity



Such a refined version of robustness was introduced in Kratschmer, A.S., and
Zahle (2012), and here we apply it to, and explain it at the hand of, law-invariant
convex risk measures (Kratschmer, A.S., and Zahle, 2013)



Such a refined version of robustness was introduced in Kratschmer, A.S., and
Zahle (2012), and here we apply it to, and explain it at the hand of, law-invariant
convex risk measures (Kréatschmer, A.S.; and Zéhle, 2014)

The key is to replace metrics for the weak topology in Hampel’s robustness with

metrics for the 1)-weak topology on
M= (®) = {p e (B /wdu < oo}

where 1 : R — [0, 00) is a continuous weight function satisfying ¢ > 1 outside

some compact set.

Typical example: (x) = |z|P



We have

by, — 1 -weakly < /fd,un — /fd,u V continuous f with |f| < c¢(1 + 1)
<~ U, — p weakly and /@Dd,un — /wd,u

A suitable metric is

dy(1.v) = den(us) + | W~ [wa]

The 1)-weak topology coincides with the weak topology iff 1 is bounded.



2 Preliminaries

The choice 2 := L*> := L>°(Q),.%#,P) is not suitable when dealing with possibly
unbounded risks. Better: Orlicz spaces or Orlicz hearts (S. Biagini and Frittelli
(2008), Cheridito and Li (2009)).

A Young function will be a left-continuous, nondecreasing convex function
U : Ry — [0, 00] such that 0 = ¥(0) = lim, 0 V(z) and lim,4+o ¥(z) = 0.

The Orlicz space associated with W is
LY :=LY(Q,7,P)={X € L°|E[¥(c|X]|)] < oo for some ¢ > 0}.
It is a Banach space when endowed with the Luxemburg norm,
| X||e :=inf {A > O[E[W(|X]/A)] < 1}.
The Orlicz heart is defined as
HY .= HY(Q,7,P)={X € L°|E[¥(c|X]|)] < oo for all ¢ > 0}

Cheridito and Li (2009): finite risk measures on HY are continuous for || - || ¢
10



For a finite Young function W,
L*cHYcLYcL!

and these inclusions may all be strict. In fact, the identity HY = LY holds if and
only if ¥ satisfies the so-called As-condition

(3) there are C, xy > 0 such that U (2x) < CV¥(x) for all x > xy.

The As-condition is clearly satisfied when specifically ¥(x) = xP /p for some
p € [1,00). In this case, HY = LY = L? and [|Y|¢ = p~/?||Y]|,.

In the sequel, ¥ will always denote a finite Young function

11



3 Consistency

For a distortion risk measure p, the estimator p,, = Z,(my,) has the form of an
L-statistic and results by van Zwet (1980), Gilat and Helmers (1997), and
Tsukahara (2013) can be applied.

Our following result works for general law-invariant convex risk measures:

Theorem 1. Suppose that p is a law-invariant convez risk measure on HY and
X1,Xo,... is a stationary and ergodic sequence of random variables with the

same law as X € HY. Then py, is a stronly consistent estimator in the sense that

b= Fylin) = Bp(~ " 0x,) — p(X)  Peas
k=1

12



It follows from Birkhoft’s ergodic theorem that, P-a.s.,

My — p:=Po X1 U(| - |)-weakly

So Theorem |1 would have followed if it were possible to establish the continuity
of v = Z,(v) with respect to the ¥(| - |)-weak topology. But this is not possible
unless W satisfies the As-condition:

13



4 Continuity

When V¥ is a Young function, then W(|-|) is a weight function, and we will simply
write .}’ in place of %1@(|'|). We will also use the term W-weak convergence

instead of ¥(| - |)-weak convergence etc. We recall the notation
MHY)={PoX ' X e H"}

for the class of all laws of random variables X € HY.

Remark 1. The identity .#(H"Y) = .#7* holds if and only if ¥ satisfies the
Ag-condition (3).

14



Theorem 2. For a finite Young function ¥ the following conditions are
equivalent.

(a) For every law-invariant convex risk measure p on HY, the map

R, : M(HY) = R is continuous for the U-weak topology.
(b) W satisfies the Ag-condition (3).

15



Theorem 2. For a finite Young function W the following conditions are

equivalent.

(a) For every law-invariant convex risk measure p on HY, the map
R, : M(HY) = R is continuous for the U-weak topology.

(b) W satisfies the Ag-condition (3).

Proof is based on the following Skorohod representation result for y-weak

convergence:

Theorem 3. For any finite Young function ¥ the following two conditions are

equivalent.

(a) A sequence (uy) in A (HY) converges ¥-weakly to some pg if and only if
there exists a sequence (Xn)nen, N HY such that X,, has law u,, for each
n € Ny and | X,, — Xo|lv — 0.

(b) W satisfies the Ag-condition (3.

15



Idea of proof of Theorem

(b)=-(a): Suppose ¥ satisfies the As-condition and p is a convex risk measure
on HY with associated map Z,. Let (u,) be a sequence such that u,, — po
U-weakly. By Theorem |3|there exists a sequence (X,,)nen, in HY such that each
X, has law pu,, and such that || X,, — Xo|lg — 0. But p is continuous with respect

to || - ||w and so
Hp(tin) = p(Xn) — p(Xo) = Zp (o),

which proves the implication (b)=-(a).

(a)=-(b): Use utility-based shortfall risk,
p(X):=inf{m e R : E[{(-X —m)]| <z},

for

{(x) = ¥(8x™)
together with the fact that there exists Y > 0 such that E[¥(Y)| < co and
E[¥(2Y)] = oo to construct X,, such that Po X1 — §g but p(X,,) 4~ p(0). O

16



One might ask whether %, is even continuous with respect to a weaker topology.
For instance, this would be the case when p can be extended to a law-invariant

convex risk measure on a larger Orlicz heart H® > HY.

To address this question, let p be a law-invariant convex risk measure on L and
let

(4) p: L' — RU{+o0}

denote the unique extension of p that is convex, monotone, cash invariant, and
lower semicontinuous with respect to the L!-norm (Filipovic and Svindland,
2013). When p is finite on some Orlicz heart HY, it will be a convex risk measure
and hence be continuous on HY with respect to the corresponding Luxemburg

norm

17



Theorem 4. Suppose that p is a law-invariant convex risk measure on L°°. Let
furthermore ¥ be a Young function satisfying the As-condition . Then the
following conditions are equivalent.

)
(b) The map %5 : M (HY) — R is continuous for the ¥-weak topology.
(c) The map %, : M (L>) — R is continuous for the V-weak topology.
(d) If (X,) is a sequence in L™ with || X,|v — 0, then p(X,,) — p(0).

18



5 Differentiability, functional detal method, and

central lIimit theorems

When p is coherent, one can establish a weak form of Hadamard differentiability
of the map #, (when defined on a suitable subspace of j/fb ) and, under
additional technical assumptions, obtain results such as the following one.

Suppose that 1, is a sequence of random measures such that 1,, — u and

1
—(fin—p) — B weakly

n

for some random signed measure 5 and a sequence «,, T co. Then

L (Bo() — Bp11) — VR f)  weakly,

029

where VZ,(1; 8) is a Hadamard-type derivative of %, at u in direction /3. See
Kratschmer, A.S., and Zahle (2013) for details.

19



6 Qualitative and comparative robustness

QO =RN X;(w)=w(i)forweNandiecN, and F :=o(X;,X>,...). For any
Borel probability measure 1 on R, we will denote

P, = ,u®N

Definition 1 (Qualitative robustness). Suppose .4 C . is a set, d4 is a metric
on .4, and dp is a metric on .#;. Then %, is called robust on .4#” with respect
to d4 and dp if for all u € A4 and € > 0 there exists § > 0 and ng € N such that

5) veSN,dalp,v)<d = dB(Puoﬁn_l,Pyoﬁn_l)gs for n > ng.

In Hampel’s classical notion of qualitative robustness: A4 = .41
and d4 and dg = Lévy metric or Prohorov metric (Mizera, 2010)

20



Here we take for da:

dy (V) = dProh(MaV)+‘/¢dﬂ—/¢dV‘

and

dB — dProh

Definition 2. Let @ be a weight function. A set 4" C %fb is called uniformly
Y-integrating when

(6) lim sup / Yvdv = 0.
M=o yen J{y>M}

When v is bounded, every set 4" C .#; is uniformly -integrating.

Definition 3. Let @ be a weight function and .#Z C ,//fp . A risk functional %,
is called 1-robust on .# when %, is robust with respect to d,, and dp.on on every

uniformly v-integrating set A4 C .
21



Proposition 1. Let %, be the risk functional associated with a law-invariant

convex risk measure p on L>°. When 1 : Ry — (0,00) is a nondecreasing function
such that %, is Y(| - |)-robust on A (L>), then ¢ has at least linear growth:

lim inf V()

xToo X

> ()

The preceding proposition is a strengthening of the main result of Cont, Deguest,
and Scandolo (2010). It also allows us to essentially limit the analysis of the
y-robustness of risk functionals to weight functions ¢ (x) = ¥(|z|) arising from a

Young function W. In this context, we have the following result.

Theorem 5. For a finite Young function W, the following conditions are

equivalent.

(a) For every law-invariant convez risk measure p on HY, %, is ¥-robust on

(b) U satisfies the Ag-condition (3).

22



As in Theorem 4, HY may not be the “canonical” space for p in the sense that p
can be extended to a larger space. Such a situation has an impact on the
robustness of p as explained in the next result. By p we denote again the
extension (4.

Theorem 6. Let ¥ be a Young function satisfying the As-condition (3). For a
law-1nvariant convex risk measure p on L°°, the following conditions are

equivalent.

(a) #5 is V-robust on M7 .

(b) %, is Y-robust on M (L*).
(c) p is finite on HY.

The most important aspect of Theorem [6]is that it allows us to study the
robustness properties of a given risk functional on .Z (L°°) rather than on its full
domain. Since any risk functional that arises from a law-invariant convex risk
measure is defined on .Z (L), we can thus compare two risk functionals in

regard to their degree of robustness.
23



Definition 4 (Comparative robustness). We will say that p; is at least as robust
as po if the following implication holds. When ¥ is a Young function satisfying
the Ag-condition (3)), and %, is U-robust on .# (L), then %,, is ¥-robust on
A (L*>°). When, in addition, there is a ¥ such that #,, is ¥-robust on .Z (L)

but #,, is not, then we will say that p; is more robust than ps.

We immediately get the following corollary.

Corollary 1. For two law-invariant convex risk measures p1 and ps on L°°, the

following conditions are equivalent.

(a) p1 is at least as robust as ps.

(b) When the Young function ¥ satisfies the As-condition and py 1S finite on
HY, then p, is also finite on HY.

24



Definition 5 (Index of qualitative robustness). Let p be a law-invariant convex
risk measure on L°°. The associated index of qualitative robustness is defined as

) = (8 {p € 05112, |- P o 21})

It follows from Proposition |1|that any law-invariant convex risk measure p
satisfies iqr(p) < 1. Thus, T heorem@ implies that

(7) iqr(p) = (inf {p €[1l,00)|p is finite on Lp})_l.

25



7 Index of qualitative robustness for distortion

risk measures

We now turn to the important example class of distortion risk measures defined

(8) pg(X) r=/_ g(Fx(y))dy—/Ooo (1—g(Fx(y)) dy

where F'x denotes the distribution function of X, and g is a nondecreasing
function such that g(0) =0 and ¢g(1) = 1. Then p, is a law-invariant convex risk
measure on L if and only if g is concave. In this case, p, is even coherent and

can be represented as

(9) pg(X) = g(0+) esssup(—X) —|—/0 V@R, (X)g' (t) dt.

20



Proposition 2. Suppose that g is concave and continuous. Then, for p € [1,00)
and zl? + % =1, the extension p, of py is finite on LP if and only if g', € L(0,1).

In particular,

g —1

1
iqr(pg) = where q" = sup {q > 1 | / (¢’ (1) dt < oo}.
0
Example 1 (Average Value at Risk). Average Value at Risk at level a € (0, 1),

AV@R,, is given in terms of the concave distortion function ¢;(¢) = (¢/a) A 1.
AV@R,, is also called Expected Shortfall, Conditional Value at Risk, or TailVaR.
Since g] is bounded, it follows from Proposition 2| that iqr(AV@R,) = 1.

Example 2 (MINMAXVAR). MINMAXVAR is defined in terms of the concave

distortion function
gany(t) =1 (1—tT5)1*,
where A and « are nonnegative parameters. An easy computation shows that

gﬁw(t) ~ C - t_l%x as t | 0, and so we have iqr(MINMAXVAR) = H%\

27



8 More on qualitative robustness

Definition 6. A set 4 C //fb has the uniform Glivenko—Cantelli (UGC)

property if m,, satisfies a weak LLN w.r.t. dy, uniformly over P, with v € 4.
That is, for all € > 0 and ¢ > 0 there is ng € N such that

(10) sup P, |dy(v,my) >6] < e for n > ny.
veN

Recall that 4 C %fp is called uniformly 1-integrating when
lim sup / Ydv = 0.
MToo vey J{yp>M}

Theorem 7. If A s uniformly ¥-integrating, then it has the UGC property.
Conversely, if 4 has the UGC property and the medians of ¢ under v € A are
bounded, then A s uniformly 1 -integrating.

28



Proof: It is known that .#7 has the UGC property for the Prohorov metric
(Mizera, 2010). All one therefore needs to show is

(11) sup IP’,,H%anw(Xi)—/wdu| 25} < e for n > nyg.
i=1

veN

Chung (1951) showed that such a LLN holds if .4 is uniformly -integrating. He
showed moreover that the validity of (11)) requires that .4 is uniformly
y-integrating in the case the medians of 1) under v € 4" are bounded.

Let us give a new argument for

A is uniformly -integrating = (|11

By Markov’s inequality, (11 will follow once we have

(12) lim sup E,,H—Zw [P(X 1)}“ = 0.

n—oo veN
The fact that .4 is uniformly -integrating implies compactness of
KX ={voy t|lve N}

w.r.t. the | - |-weak topology in //llH([O, 0)).
29



Further, notice that (12 is implied by

(13) lim Fj,(7) = 0 uniformly in 7 € &

n—oo

where

F,(r) = Ew[‘%i X; - Ex[X1]|]

In sequel, we will show that (13) holds. By Dini’s lemma and the compactness of
K, for (13)) to be true it suffices to show that

(a) F,, \, 0 pointwise and

(b) F, is continuous for the | - |-weak topology.

As for (a), £ >°% | X; is a backwards (reversed) P,-martingale and so

1 mn
EDIR b e
n 1=1

is a backwards P,-submartingale converging to 0. This implies (a).
30



For (b), we need to show now that each F), is continuous for the | - |-weak
topology. Let (7 )ken, such that m, — 7 | - |-weakly; in particular

(14) / my(dz) — / z mo(dz).

We will show F), () — F,(mg) as k — oo. To prove the latter convergence, we
define functions f, : [0,00) x [0, 00)" — |0, 00) by

1 n
fn(t,$1,...,l‘n) = ‘ﬁ EEZEZ —t|.
1=

For each ¢ € [0, o) fixed, the function f,(t,-) can be bounded by C(1 + 1) where
Un(@1,. .., Tn) = = > ;. Hence, for each ¢ € [0,00) the map

7T|—>/fn(t,-)d7r®” = IEWH%ETL:X@—ISH
i=1

is continuous for the | - [-weak topology. Thus, for t := E,, [X 1] we obtain

(15) EmH%zn:Xi - Er, [X1]] —>E7TOH%§:XZ- ~En, [x]| |

1=1 1=1

31



Now, combining the inequality
| (k) — F(mo))|

E,, { |% zn:Xz- — B, [Xi] ‘ } — Ey(mo)

1 n
S Fn(ﬂ-k)_EﬂkHEZXZ_EWO[Xl]H"|‘
) =1

1=1

/xﬂk(da:)—/azwo(dx)‘ +

with (14) and (15) yields F),(mr) — Fy, (7). ]

INA

E,, [ )% iX — B, [X)] ‘ } — Ey(mo)

32




Consider robustness for a general estimator of the form

AN

T, =T(my)

for some statistical functional T : . Z — R.

Definition 7 (i-robustness). Let .# be a subset of //lfb . 1" 1s called )-robust at
1 in A if for each € > 0 and every uniformly t-integrating set .4~ C .# with
1t € A there are 0 > 0 and ng € N such that

veN, dy(p,v)<d = dproh(PMoT\gl,]P’yofgl)ge for n > ny.

Theorem 8 (Hampel’s theorem for the v-weak topology). When T : . # — R is
V-weakly continuous at p € A, then T is P-robust at p in A .

33



Proof: Must show that for every € > 0 there are some 0 > 0 and ny € N such

that for all v € A4 and n > ny,
dy(p,v) <6 = dpron(Pyo T L P, 0T <e
So, let € > 0 be fixed. We look for § > 0 and ng € N such that for all n > ng
dyp(,v) <6 = dpron(Or(u), Py o Ty 1) < %,
where 7, is the Dirac measure at T'(x). Strassen’s theorem implies

P, |:‘T(ILL) - T(mn)’ < %} >1-— % — dPI‘Oh((ST(/J,)7IP)V O Tn_l) <
Thus, it suffices to find some 0 > 0 and ng € N such that for all v € 4 and
n > ny

DO ™

(16) dy(p,v) <8 = P%Uﬁ@—Tm%ﬂgg}zl—g
Since T is 1-continuous at p there is > 0 such that dy(u, my) < 26 implies
T(p) = T(mq)| < 5.

34



Thus, in order to obtain (16), let us fix any v € .4 satisfying dy(u,v) < 4. In

view of the triangular inequality dq(u, My, ) < dy (v, My ) + dy (1, v) we have

Now,

16

P, | dy (v, fiin) < 5}
< Py dy(, i) < 6+ dy(p,v)

dy (1, ) < 20]

VAN
= = N
S

VAN

T = T(n)] < 5.

is an immediate consequence of the UGC property of (4", d).

[]
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Thus, in order to obtain (16), let us fix any v € .4 satisfying dy(u,v) < 4. In

view of the triangular inequality dq(u, My, ) < dy (v, My ) + dy (1, v) we have

P, | dy (v, i) < 5}

< Py dy(, i) <6+ dy(,v)]
< Py |dy(p, i) < 25}
< P |[T(w) ~ T(a)| < 3.
Now, (16) is an immediate consequence of the UGC property of (4, d). ]

Theorem 9 (Converse of Hampel’s theorem for the 1-weak topology). Suppose
that T : A — R is a statistical functional. Let u € # and g > 0 be given, and
suppose that T is weakly consistent at each v in M with dy (v, p) < 6o. When T
is Y-robust at p in A, then T : # — R is -weakly continuous at L.

30



9 Conclusion

We have introduced a refined version of qualitative robustness of statistical
functionals. For the risk functional associated with a law-invariant convex risk
measure, robustness can be formulated within the context of Young functions W
and it holds if and only if the risk measure is finite on the corresponding Orlicz
space—provided that W satisfies the As-condition. There is still work to be done
for the case in which ¥ does not satisfy the As-condition. Also, how can one

better describe the tradeoff between robustness and tail sensitivity?
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Thank you
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