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Aim of this presentation

We start from Lundberg’s thesis (1903) on ruin theory and modify his

model step by step until we arrive at today’s solvency considerations.
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Cramér-Lundberg model

Harald Cramér

Consider the surplus process (Ct)t≥0 given by

Ct = c0 + πt−
Nt∑
i=1

Yi,

where

c0 ≥ 0 initial capital,

π > 0 premium rate,

Lt =

Nt∑
i=1

Yi ≥ 0 homogeneous compound Poisson claims process,

satisfying the net profit condition (NPC): π > E[L1].
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Ultimate ruin probability

The ultimate ruin probability for initial capital c0 ≥ 0 is given by

ψ(c0) = P
[

inf
t∈R+

Ct < 0

∣∣∣∣C0 = c0

]
= Pc0

[
inf
t∈R+

Ct < 0

]
,

i.e. this is the infinite time horizon ruin probability.

Under (NPC):

ψ(c0) < 1 for all c0 ≥ 0.

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5

surplus process

3



Lundberg’s exponential bound

Filip Lundberg

Assume (NPC) and that the Lundberg coefficient

γ > 0 exists. Then, we have exponential bound

ψ(c0) ≤ exp{−γc0},

for all c0 ≥ 0 (large deviation principle (LDP)).

This is the light-tailed case, i.e. for the existence of γ > 0

we need exponentially decaying survival probabilities of

the claim sizes Yi,

because we require E[exp{γYi}] <∞.
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Subexponential case

Von Bahr, Veraverbeke, Embrechts investigate the heavy-tailed case.

Paul Embrechts

In particular, for Yi
i.i.d.∼ Pareto(α > 1) and (NPC):

ψ(c0) ∼ const c−α+1
0 as c0→∞.

Heavy-tailed case provides a much slower decay.
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Discrete time ruin considerations

Insurance companies cannot

continuously control their

surplus processes (Ct)t≥0.
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They close their books and check their surplus on a yearly time grid.

� Consider the discrete time ruin probability

Pc0

[
inf
n∈N0

Cn < 0

]
≤ Pc0

[
inf
t∈R+

Ct < 0

]
= ψ(c0).

This leads to the study of the random walk (Cn − c0)n∈N0 for (discrete time)

accounting years n ∈ N0.
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One-period ruin problem

Insured buy one-year non-

life insurance contracts: why

bother about ultimate ruin

probabilities?
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Moreover, initial capital c0 ≥ 0 needs to be re-adjusted every accounting year.

� Consider the (discrete time) one-year ruin probability

Pc0 [C1 < 0] ≤ Pc0

[
inf
n∈N0

Cn < 0

]
≤ Pc0

[
inf
t∈R+

Ct < 0

]
= ψ(c0).

This leads to the study of the surplus C1 = c0 + π −
∑N1
i=1 Yi at time 1.
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One-period problem and real world considerations

Why do we study so complex

models when the real world

problem is so simple?
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• Total asset value at time 1: A1 = c0 + π.

• Total liabilities at time 1: L1 =
∑N1
i=1 Yi.

C1 = c0 + π −
N1∑
i=1

Yi = A1 − L1

???
≥ 0. (1)

There are many modeling issues hidden in (1)! We discuss them step by step.
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Value-at-Risk (VaR) risk measure

Freddy Delbaen

C1 = A1 − L1

???
≥ 0.

� Value-at-Risk on confidence level p = 99.5% (Solvency II):
choose c0 minimal such that

Pc0 [C1 ≥ 0] = P [A1 ≥ L1] = P [L1 − c0 − π ≤ 0] ≥ p.

� Choose other (normalized) risk measures % :M⊂ L1(Ω,F ,P)→ R and study

%(L1 −A1) = % (L1 − c0 − π)
???
≤ 0,

where “≤” implies SOLVENCY w.r.t. risk measure %.

9



Asset return and financial risk (1/2)

• Initial capital at time 0: c0 ≥ 0.

• Premium received at time 0 for accounting year 1: π > 0.

� Total asset value at time 0: a0 = c0 + π > 0.

This asset value a0 is invested in different assets k ∈ {1, . . . ,K} at time 0.

asset classes

• cash and cash equivalents

• debt securities (bonds, loans, mortgages)

• real estate & property

• equity, private equity

• derivatives & hedge funds

• insurance & reinsurance assets

• other assets

10



Asset return and financial risk (2/2)

Choose an asset portfolio x = (x1, . . . , xK)′ ∈ RK at time 0 with initial value

a0 =

K∑
k=1

xkS
(k)
0 ,

where S
(k)
t is the price of asset k at time t. This provides value at time 1

A1 =

K∑
k=1

xkS
(k)
1 = a0 (1 + w′R1) ,

for buy & hold asset strategy w = w(x) ∈ RK and (random) return vector R1.

%(L1 −A1) = % (L1 − a0 (1 + w′R1))
???
≤ 0.

where “≤” implies solvency w.r.t. risk measure % and business plan (L1, a0,w).
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Insurance claim (liability) modeling (1/2)

MAIN ISSUE: modeling of insurance claim L1 =
∑N1
i=1 Yi.

� Insurance claims are neither known nor can immediately be settled at occurrence!

reporting date

claims cash flows X  = ( X 1 , X 2 ,… ) time

(accounting year 1)

insurance period

claims closing

accident date

p
re

m
iu

m
 π

� Insurance claims of accounting year 1 generate insurance liability cash flow X:

X = (X1, X2, . . .) with Xt being the payment in accounting year t.

Question: How is the cash flow X related to the insurance claim L1?
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Insurance claim (liability) modeling (2/2)

reporting date

claims cash flows X  = ( X 1 , X 2 ,… ) time

(accounting year 1)

insurance period

claims closing

accident date

p
re

m
iu

m
 π

� Main tasks:

• cash flow X = (X1, X2, . . .) modeling,

• cash flow X = (X1, X2, . . .) prediction,

• cash flow X = (X1, X2, . . .) valuation,

using all available relevant information:

� exactly here the one-period problem turns into a multi-period problem.
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Best-estimate reserves

Choose a filtered probability space (Ω,F ,P,F) with filtration F = (Ft)t∈N0 and

assume cash flow X is F-adapted.

1st attempt to define L1 (interpretation of Solvency II):

L1 = X1 +
∑
s≥2

P (1, s) E [Xs| F1] ,

where

• E [Xs| F1] is the best-estimate reserve (prediction) of Xs at time 1;

• P (1, s) is the zero-coupon bond price at time 1 for maturity date s.

Note that L1 is F1-measurable, i.e. observable w.r.t. F1 (information at time 1).
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1st attempt to define L1

L1 = X1 +
∑
s≥2

P (1, s) E [Xs| F1] . (2)

Issue: Solvency II asks for economic balance sheet, but L1 is not an economic value.

(a) Risk margin is missing:
any risk-averse risk bearer asks for such a (profit) margin.

(b) Zero-coupon bond prices and claims cash flows Xs, s ≥ 2, may be influenced by
the same risk factors and, thus, there is no decoupling such as (2).
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2nd attempt to define L1

Hans Bühlmann

Choose an appropriate state-price deflator ϕ = (ϕt)t≥1 and

L1 = X1 +
∑
s≥2

1

ϕ1
E [ϕs Xs| F1] .

• ϕ = (ϕt)t≥1 is a strictly positive, a.s., and F-adapted.

• ϕ = (ϕt)t≥1 reflects price formation at financial markets,
in particular,

P (1, s) =
1

ϕ1
E [ϕs| F1] .

• If ϕs and Xs are positively correlated, given F1, then

L1 ≥ X1 +
∑
s≥2

P (1, s) E [Xs| F1] .
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Solvency at time 0

� Choose a filtered probability space (Ω,F ,P,F) such that it caries the random
vectors ϕ (state-price deflator), R1 (returns of assets) and X (insurance liability
cash flows) in a reasonable way.

� The business plan (X, a0,w) is solvent w.r.t. the risk measure % and state-price
deflator ϕ if

%(L1 −A1) = %

X1 +
∑
s≥2

1

ϕ1
E [ϕsXs| F1]− a0 (1 + w′R1)

 ≤ 0.

Thus, it is likely (measured by % and ϕ) that the liabilities L1 are
covered by assets A1 at time 1 in an economic balance sheet.
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Acceptability arbitrage

•

P. Artzner

The choice of the state-price deflator ϕ and the risk measure %
cannot be done independently of each other:

? ϕ describes the risk reward;
? % describes the risk punishment.

• Assume there exist acceptable zero-cost portfolios Y with

E[ϕ′Y] = 0 and %

Y1 +
∑
s≥2

1

ϕ1
E [ϕsYs| F1]

 < 0.

Then, unacceptable positions can be turned into acceptable ones
just by loading on more risk =⇒ acceptability arbitrage.

• Reasonable solvency models (ϕ, %) should exclude acceptability
arbitrage, see Artzner, Delbaen, Eisele, Koch-Medina.
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Asset & liability management (ALM)

The business plan (X, a0,w) is solvent w.r.t. risk measure % and state-price deflator
ϕ if

%(L1 − A1) = %

X1 +
∑
s≥2

1

ϕ1

E [ϕsXs| F1]− a0
(
1 + w

′
R1

) ≤ 0.

ALM optimize this business plan (X, a0,w):
Which asset strategy w ∈ RK minimizes the capital a0 = c0 + π and we still remain
solvent?

� This is a non-trivial optimization problem.

� Of course, we need to exclude acceptability arbitrage, which may also provide
restrictions on the possible asset strategies w =⇒ eligible assets.
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Summary of modeling tasks

• Provide reasonable stochastic models for R1, X and ϕ (yield curve extrapolation).

• What is a reasonable profit margin for risk bearing expressed by ϕ?

• Which risk measure(s) % should be preferred? (⇒ No-acceptability arbitrage!)

• Modeling is often split into different risk modules:

? (financial) market risk
? insurance risk (underwriting and reserve risks)
? credit risk
? operational risk

� Issue: dependence modeling and aggregation of risk modules.

• Aggregation over different accounting years and lines of business?
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Dynamic considerations

Are we happy with the above considerations?

� Not entirely!

Liability run-off is a multi-period problem:

We also want sensible dynamic behavior.

This leads to the consideration of multi-period problems and super-martingales.
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