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Motivation

The financial crisis has higlighted the importance of reliable risk assessment

Relevance: Economically sound (Diversification, Aggregation, Basel)

Performance: Numerically efficient (real time, huge number of assets)
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Motivation
Value at Risk (V@R)

V@R

V@Rα(X) := −qX (α)

Widely used (Basel II)
Straightforward interpretation
Easy / efficient implementation
 A single root finding

Illustration
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Motivation
Value at Risk (V@R)

V@R

V@Rα(X) := −qX (α)

Widely used (Basel II)
Straightforward interpretation
Easy / efficient implementation
 A single root finding

Drawback:

Non-consistent aggregation of risks

Illustration

X ∼ Y and X independent of Y

−100K = V@Rα(X) + V@Rα(Y ) < V@R(X + Y ) = 250K
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Motivation
Monetary Risk Measures: Artzner, Delbaen, Eber, Heath (1999); Föllmer, Schied (2002)

“Diversification should not increase risk”

Definition (Monetary Risk Measure)

A monetary risk measure ρ is
Diversifying: for any two assets X and Y the diversified asset profile
λX + (1− λ)Y is less risky than the worse outcome

ρ(λX + (1− λ)Y ) ≤ sup {ρ(X), ρ(Y )}

Monotone: ρ(X) ≥ ρ(Y ) if loss −X is greater than loss −Y ;

Monetary: ρ(X + m) = ρ(X)−m for every amount of cash m.

Monetary and diversification implies that ρ is convex

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y )

Examples: CV@R, Entropic Risk Measure, Shortfall Risk Measure, etc.
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Motivation
Monetary Risk Measures: Conditional Value at Risk (CV@R)

CV@R (Artzner et al.)

CV@Rα(X) := −
1
α

∫ α

0
qX (s)ds

Consistent aggregation
Basel III / Swiss Solvency Test
Good interpretation

Illustration
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Motivation
Monetary Risk Measures: Conditional Value at Risk (CV@R)

CV@R (Artzner et al.)

CV@Rα(X) := −
1
α

∫ α

0
qX (s)ds

Consistent aggregation
Basel III / Swiss Solvency Test
Good interpretation

Drawbacks:

Increased numerical complexity
Backtesting – Elicitability
Statistical robustness

Illustration
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Optimized Certainty Equivalents
Definition

OCE (Ben-Tal, Teboulle [86,06])

Today’s expected loss of X

E [l(−X)]

Allocating cash η

E [l (η − X)]− η

Optimal allocation  OCE

ρ(X) := inf
η
{E [l (η − X)]− η}

Typical Loss Functions l
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Optimized Certainty Equivalents
OCE as a Risk Measure

Theorem
The optimized certainty equivalent ρ is a monetary risk measure
Optimal allocation

ρ(X) = inf
η
{E [l (η − X)]− η} = E [l (η∗ − X)]− η∗

where η∗ fulfills
E
[
l ′ (η∗ − X)

]
= 1

Robust Representation

ρ(X) = sup
Q

{
EQ [−X ]− E

[
l∗
(dQ

dP

)]}
= EQ∗ [−X ]− E

[
l∗
(dQ∗

dP

)]
where l∗ is the convex conjugate of l and dQ∗/dP = l ′ (η∗ − X)
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Optimized Certainty Equivalents
OCE as a Risk Measure

Sketch of Proof

The function η 7→ E [l (η − X)]− η is
real-valued, convex and coercive.

Optimal allocation: first order
conditions imply that η∗ fulfills

E
[
l ′ (η∗ − X)

]
= 1

and then

ρ(X) := inf
η
{E [l (η − X)]− η}

= E [l (η∗ − X)]− η∗
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Optimized Certainty Equivalents
In a Nutshell

Easy interpretation: optimal allocation of losses

Adequate for financial optimization problems (Cherny, Kupper)

Wide class of monetary risk measures by specifying the loss function l

l RM η∗ ρ(X)

ex − 1 Entropic − ln E [e−X ] ln E [e−X ]

x+/α CV@Rα qX (α) − 1
α

∫ α
0 qX (s)ds

x + x2/2 Quadratic RM  monotone mean variance

([x+1]+)n−1
n Polynomial RM
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Optimized Certainty Equivalents
In a Nutshell

An easy two step computation

1 Find the root η∗ of

η 7→ E
[
l ′ (η − X)

]
− 1 (1)

2 Compute an integral

ρ(X) = E [l (η∗ − X)]− η∗ (2)
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Numerical Computation: Transform Methods
General Result

Ingredients to compute the risk of X

Moment generating function: MX (u) = E [euX ]

Fourier transform f̂ (u) =
∫

eiux f (x)dx

Theorem
The optimal allocation η∗ is the unique root of

η 7−→
1

2π

∫
R

e(a−iu)ηMX (iu − a)l̂ ′(u + ia)du − 1,

and the Optimized Certainty Equivalent is given by

ρ(X) =
1

2π

∫
R

e(b−iu)η∗
MX (iu − b)̂l(u + ib)du − η∗

Here a, b are adequate constants.
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Numerical Computation: Transform Methods
Conditional Value at Risk

Proposition

Given η∗ = qX (α) it holds

CV@Rα(X) = −
1

2πα

∫
R

e(b−iu)η∗

(u + ib)2 MX (iu − b)du − η∗,

Alternative representations
Quantile Integration

CV@Rα(X) = −
1
α

∫ α

0
qX (s)ds

Increased complexity.
Rockafellar and Uryasev

CV@Rα(X) =
1
α

E
[
[qX (α)− X ]+

]
− qX (α)

Either Monte Carlo or direct integration if density PX (dx) = fX (x)dx is known.
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Numerical Computation: Transform Methods
Polynomial loss functions

Proposition
The optimal allocation is the unique root of

η 7→
(γ − 1)!

2π

∫
R

MX (iu − R)
e(R−iu)(1+η)

(R − iu)γ
du − 1. (3)

Once η∗ is determined, then

ρ(X) =
(γ − 1)!

2π

∫
R

MX (iu − R)
e(R−iu)(1+η∗)

(R − iu)γ+1 du −
1
γ
− η∗. (4)

Remark
The same method applies to other risk measures, e.g. expectiles or shortfall risk
measures

ρSR 7→ E [l(−ρSR − X)]− λ
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Numerical Computation: Transform Methods
Scenarios

This approach is particularly flexible for the following reasons:

We only need the moment generating function of X
A whole class of risk instruments parametrized by l̂ ;

We can immediately aggregate portfolios if the factors are independent, e.g.
X =

∑N
i=1 Xi where N is a random variable and Xi independent, then

MX (v) =
∞∑

k=1

P [N = k]
k∏

i=1

MXi (v)

Weighted portfolios and loss models à la Dembo et al.
Linear mixture models for dependence: Y1, . . . ,Ym independent random
variables, then the dependent factors U = (U1, . . . ,Un) are defined via U = AY
for A ∈ Rn×m. The moment generating function of the risk factor X =

∑n
i=1 Ui

is provided by

MX (u) =
m∏

l=1

MYl (uαl ) , αl :=

n∑
i=1

Ail

Elliptical distributions, . . .
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Risk Contribution
OCE and Risk Contributions

OCE  straightforward expression for risk contributions

Theorem
The contribution of a factor Y to the risk of a financial position X is given by

RC (X ;Y ) := lim
ε↓0

ρ(X + εY )− ρ(X)

ε
= E

[
l ′ (η∗ − X)Y

]
where η∗ fulfills

E
[
l ′ (η∗ − X)

]
= 1

Once again a two step computation with a root finding and an expectation.
The optimal allocation η∗ is already computed!
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Risk Contribution
Risk Contribution with CV@R

X =
∑N

i=1 Xi aggregation for N lines of independent risks Xi

η∗ = qX (α)

Goal: Contribution of the line Xi to the aggregated risk X .

Example (CV@R Risk Contribution)

RC(X ;Xi ) =
1

4π2α

∫
R2

M(R + iu)
e−(R1+iu1)η

∗

(R1 + iu1)(u1 − u2 − iR1 − iR2)2 du

where

M(u1, u2) = MXi (u2)

n∏
j 6=i

MXj (u1),

for adequate constants R = (R1,R2).

2 dimensional integration! Monte Carlo needs to simulate N random variables.

Remark
In the linear mixture model: replace the moment generating function.
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Numerical Results
NIG

The Moment generating function of NIG is given by

MX (u) = exp
(

uµ+ δ

[√
α2 − β2 −

√
α2 − (β + u)2

])
,

where α = shape, β = skewness and δ = scaling parameters (zero mean)

Parameters

α β δ

NIG1 106.00 -26.00 0.0110
NIG2 26.00 -10.60 0.0070
NIG3 6.20 -3.90 0.0011
NIG4 1.00 0.00 1.0000

Table : Parameter sets for NIG distributions.
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Numerical Results
CV@R

Programmed in Matlab, R and Num/Sci-Py (same results)

V@R CV@R

Value CT Value CT (F) CT (S)

NIG1 0.0210 92 ms 0.0298 99 ms 212 ms
NIG2 0.0311 87 ms 0.0585 94 ms 359 ms
NIG3 0.0073 88 ms 0.0352 97 ms 636 ms
NIG4 1.5914 89 ms 2.2872 97 ms 197 ms

Table : Numerical results for V@R and CV@R at the 5% level.

V@R CV@R

Value CT Value CT (F) CT (S)

NIG1 0.0350 95 ms 0.0444 104 ms 211 ms
NIG2 0.0737 92 ms 0.1108 99 ms 360 ms
NIG3 0.0369 88 ms 0.1162 100 ms 507 ms
NIG4 2.7019 94 ms 3.4503 99 ms 194 ms

Table : Numerical results for V@R and CV@R at the 1% level.
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Numerical Results
Polynomial loss function

Polynomial loss function, Fourier vs Stochastic Root Finding (Weber et al.)

Fourier SRF

η∗ ρ(X) CT(F) CT

NIG1 0.0028 -0.0027 62 ms 455 ms
NIG2 0.0031 -0.0029 71 ms 449 ms
NIG3 0.0008 -0.0007 129 ms 443 ms
NIG4 -0.0957 0.4380 39 ms 448 ms

Table : Polynomial risk measure with γ = 2.

γ = 4 γ = 5

η∗ ρ(X) CT(F) η∗ ρ(X) CT(F)

NIG1 0.0027 -0.0026 70 ms 0.0026 -0.0026 30 ms
NIG2 0.0028 -0.0026 40 ms 0.0026 -0.0025 32 ms
NIG3 0.0006 -0.0005 39 ms 0.0005 -0.0004 27 ms
NIG4 -1.0283 1.4994 124 ms -1.8095 2.3915 103 ms

Table : Polynomial risk measures with γ = 4 and γ = 5.
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Conclusions

Optimized certainty equivalents and Fourier methods offer
economically reasonable risk assesement tools
very competitive computational times
realistic scenarios

S. Drapeau, M. Kupper, A. Papapantoleon:
A Fourier approach to the computation of CV@R and optimized certainty
equivalents
Journal of Risk (forthcoming, arXiv:1212.6732)

Thank you for your attention!
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