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To Bet or Not to Bet... In EUT

@ When is it Pareto-optimal for risk-averse agents to take bets?

= Starting from an environment with no aggregate uncertainty, under what conditions is it
Pareto-improving to introduce uncertainty through betting (trade of an uncertain asset)?

@ One obvious case is when the agents are risk-averse EU-maximizers and do not share
beliefs (Billot et al., 2000, ECMA):

= If the agents disagree on probability assessments, then they find it Pareto-improving to
engage in uncertainty-generating trade (i.e., to bet):

. . EUT o . .
Disagreement about beliefs = Betting is Pareto-improving

== Conversely, disagreement about probabilities is the only way that betting may be
Pareto-improving when starting from a no-betting allocation:

Common beliefs == Betting is not Pareto-improving (no-betting PO)
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Bilateral Risk Sharing: The Main Idea

@ We examine a situation in which both the agent and the counterparty are
Rank-Dependent Utilities (RDU), with different probability weighting functions of the
same underlying probability measure.

@ RDU is popular to model ambiguity-aversion and the over-weighing of the probabilities
of extreme (good and/or bad) events.

= We show that, as long as the agents’ probability weighting functions satisfy a certain
consistency requirement, PO allocations are no-betting allocations.
= For instance, when both agents are risk-averse (in a weak sense).

= Otherwise, betting is PO.
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Setting

@ Let (S, X, P) be a non-atomic probability space, and let L' (S, ¥, P) be the space of all
integrable, R-valued, and X-measurable functions on (S, X, P).

@ There are two agents who seek a betting arrangement.

@ We assume no aggregate uncertainty in this economy, and the aggregate wealth is given
by W e R.

@ A (feasible) allocation is a pair (X1, Xo) € L1 (S, %, P) x L1 (S, %, P) such that
X1+ Xo = W.

= Trading is therefore seen as betting rather than as hedging or risk-sharing.
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Setting

@ A feasible allocation (X1, X2) is a Pareto-improvement over another feasible allocation
(Y1, Vo) if
Ui(Xi) = Ui(Y5),

for i € {1, 2}, with at least one strict inequality.

@ A feasible allocation (Xj, X3') is Pareto-Optimal (PO) if there is no other feasible
allocation (X1, X2) that is a Pareto-improvement over (X, X5).

@ A feasible allocation (X1, X2) is a no-betting allocation if for some / € {1,2} and some
constant c e R, Xj = ¢, P-a.s. (and hence X5_j = W — ¢, P-as.)

= For example, (aW, (1 — a) W) is a no-betting allocation, for any o € R.
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Assumptions

@ The preferences of Agent 1 are to maximize:

+0o0

Ui(2) :Jul (2) dTloP::L TL(P({seS:u(Z(s) > 1)) dt

+ Ji) [M(P{seS:u(Z(s))>1t})—1] dt = jul(x) Ti(1 — Fz(x))dFz(x).

@ The preferences of Agent 2 are to maximize:

Us(Z) = qu (Z) dTs 0 P.

@ The utility functions u; are increasing, strictly concave, continuously differentiable, and
satisfy the Inada conditions lim u/(x) = +o0 and lim u’(x) =0.
X——00 X—400

@ The probability weighting functions T; : [0, 1] — [0, 1] are such that T;(0) = 0,
Ti(1) = 1, and functions T; are absolutely continuous and increasing.
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What if there Is aggregate uncertainty?

@ In part, an open question...

@ Chateauneuf et al. (2000), Carlier and Dana (2008), Chakravarty and Kelsey (2015) all
assume that the probability weighting functions are convex.

@ Xia and Zhou (2016) assume that all agents use the same probability weighting
function.

@ Jin et al. (2019) show that Pareto optimal risk-sharing contracts exist under technical
conditions that require aggregate market uncertainty.

@ It is well-known in economics that (no) aggregate uncertainty matters (Billot et al.,
2000, 2002; Chateauneuf et al., 2000; Ghirardato and Siniscalchi, 2018; B and
Ghossoub, 2020).
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Setting

(73\/0) sup {ful(W—Y) dTloP:fuz(Y) deoP>v0}.
Yell(S,%,P)

Lemma

(i) If the allocation (X}, X¥) is PO, then X5 solves Problem (73\/0) with Vo := U (X5).

(i) For a given Vy € R, any solution Y* to Problem (73\/0> leads to an allocation
(W — Y*, Y*) that is PO.

(iil) If Y* e L1 (S, %, P) solves Problem (73\/0) for a given Vo € R, then Us (Y*) = Vp.
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Optimal Betting Between Two RDU Agents

Theorem
A feasible allocation (X', XJ') is Pareto-Optimal if there exists some A\* > 0 such that

XF=m? (x*a’(n (U) )) . where:

e U is a random variable on (S, X, P) with a uniform distribution on (0, 1),

e m(x):= U%Z\(/X_)X), for all x = 0,

@ § is the convex envelope on [0, 1] of the function W : [0, 1] — R defined by
W (t):= To (Tt (¢)), where To(t) =1— To>(1—t), foreach t € [0, 1].

Moreover, for every PO allocation (X;f, X5), there exists a \* > 0 such that X3 has the
same distribution as m~* (A*é’(Tl (V) )) under P.
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Convex envelope

@ The convex envelope of a function is the largest convex function that is point-wise
dominated by that function
- Thus, the convex envelope of f on the interval [0, 1] is defined as the greatest convex
function g on [0, 1] such that g (x) < f (x), for each x € [0, 1].

Corollary
If both Ty and T, are concave, then a feasible allocation (X;', X3') is PO if there exists some

A* > 0 such that - U)
* . —1 % 2 —
= (v (B

Moreover, for every PO allocation (Xif, X5'), there exists a X\* > 0 such that X3 has the
tributi —1 (3 (121=U)
same distribution as m <>\ ( Z’T{(U) )) under P.
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Example with Inverse S-shaped Probability Weighting Functions

@ As in Tversky and Kahneman (1992), let the probability weighting function T; be given
by:
Ti (t) t% vVt e [0, 1]
i = ' €U, 1],
' (t% + (1 —t)")"

for some «y; € (0, 1].
@ |t then follows that:

(1-T7 ()™

V(t)=1-—
(T @)™ + (1= 77 (1))

, Vte [0, 1].

Yo
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Example, continued

Let ;1 = 0.5 and v, = 0.9. Then:
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Example, continued

@ Let W =0 and uj(x) = w for xe R and 3, > 0.
@ m(x) = exp((B1 + B2)x) for x e R, and so m~*(y) = In(y)/(B1 + B2) for y > 0.
@ Let By = 0.5 and B> = 0.5. A feasible allocation (Xj*, X5) is PO if there exists some

A* > 0 such that
X5 =t (v (Tw))) - <61 im) n (o ()
=In(A*) +In (5’(T1 (U))) :

@ Thus, the choice of A* > 0 leads to a deterministic side-payment (positive or negative),
in addition to the betting contract /* (U) := In (5’<T1 (V) ))

15 25



Example, continued

012 0,‘4 016 0,‘8 {

Figure: This graph plots the function /*, where /* (U) :=In (6’(T1 (V) )) and U is a random
variable on (S, X, P) with a uniform distribution on (0, 1). Agent 1 receives “large” gains with small
probability (gambling)
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Example, continued

0.2r
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Figure: This graph plots the functions /*, where [* (U) := In (6’(T1 (U))) and U is a random

variable on (S, X, P) with a uniform distribution on (0, 1). Here, we fix 7, = 0.9, and we vary the
parameter ;.
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Example, continued

CEQy := ujt (J up (X§)dTy o P) and CEQ: :=uy! U U (XF)dTo0 P) ,

with W = 0.
Y1 0.3 0.4 0.5 0.6 0.7 0.8 0.9
CEQq || 7.66% | 5.69% | 3.53% | 1.83% | 0.72% | 0.14% | 0.00%
CEQ> || 7.63% | 5.72% | 3.24% | 1.81% | 0.71% | 0.14% | 0.00%

Table: The certainty equivalents CEQ; and CEQs of I*, where /* (U) := In (6’(T1 (U))) and U is a
random variable on (S, X, P) with a uniform distribution on (0, 1). Here, we fix 2 = 0.9, and we vary

the parameter ;.
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Example, Prelec-1

Prelec-1 (1998) probability weighting function:
T (t) = exp(—(—In(t))*), Vte [0, 1],

for some a; > 0.

- inverse-S shaped when «; € (0, 1) and S-shaped when o; > 1.
-V (t)=1—exp(—(—=In(l —exp(—(— In(t))l/"l)))o@).
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Example, Prelec-1

05

I*(x)
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Figure: This graph plots the functions /*, where /* (U) := In (6’(T1 (U))) and U is a random
variable on (S, X, P) with a uniform distribution on (0, 1). Here, a; = 0.4, and we vary the parameter

ao.
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Example, Prelec-1

as 0.7 1 1.3 1.6 1.9
CEQ; || 11.74% | 15.47% | 19.06% | 22.23% | 25.00%
CEQy || 6.28% | 13.17% | 18.98% | 22.43% | 24.57%

Table: The certainty equivalents CEQ, and CEQs of I*, where /* (U) := In (6’(T1 (U))) and U is a
random variable on (S, X, P) with a uniform distribution on (0, 1). Here, we fix a; = 0.4, and we vary

the parameter a;.
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Sunspots

Theorem
The following are equivalent:

(1) W(t):= To (T (t)) =t forall t e [0,1].
(2) There exists a Pareto optimal no-betting allocation.

(3) Any Pareto optimal allocation is a no-betting allocation.

(4) Every no-betting allocation is Pareto optimal.

Here, W(t) := To (T (1)) = t writes as
Ti(z)+ To(l—=2) <1, 0or T1(z) —z+ T2(l —2) = (1 —2) <0, forall z€ [0, 1].

For instance, if for a small z € (0, 1), Agent 1 over-weights good outcomes (71(z) > z) and
Agent 2 under-weights bad outcomes (1 — To(1 — z) < z), there is a desire to shift losses
from Agent 1 to Agent 2, and thus random Pareto allocations appear.

) 26



Sunspots

Corollary
If both Ty and T, are convex, then W(t) >t for all t € [0, 1]. J

@ Thus, W(t) >t for all t € [0, 1] holds when both T; and T, are linear, and thus when
both agents are EU maximizers.

e



Pessimism

@ The pessimism premium of Z is given by At (Z) := JZdP - JZdT oP.

e Vis pessimistic if Ar(Z) =0, for all Ze L1 (S, %, P).
@ Proposition: V is pessimistic if and only if T(t) < t, for all t € [0, 1].
@ Proposition: If both agents are pessimistic, then W(t) >t for all t € [0, 1].

Strong risk aversion Jewitt risk aversion

i | f

RDEU risk aversion Monotone risk aversion

= i -
— Weak risk aversion =

1l

Pessimism
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Example, continued

For Tversky and Kahneman (1992)" probability weighting functions:
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Figure: Only close to the diagonal, there is no betting.
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Example, continued

For Prelec-1 (1998)" probability weighting functions:
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Example, continued

If Agent 1 is endowed with a Prelec-1 (1998) function, and Agent 2 with a Tversky and
Kahneman (1992) function:
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Conclusion

We give an explicit characterization of Pareto-optimal allocations, in various situations. In
particular, we show that:

(i) Betting is not PO when the two agents are averse to mean-preserving increases in risk
(i.e., probability weighting functions are convex).

(ii) If the probability weighting functions are non-convex, then no-betting allocations are
PO if it does hold that W(s) > s.

== Betting or no betting, this thus only follows from probability weighting functions T;; not on
the utilities.

(iii) The set of PO is fully described.
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