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To Bet or Not to Bet... In EUT

When is it Pareto-optimal for risk-averse agents to take bets?

ùñ Starting from an environment with no aggregate uncertainty, under what conditions is it
Pareto-improving to introduce uncertainty through betting (trade of an uncertain asset)?

One obvious case is when the agents are risk-averse EU-maximizers and do not share
beliefs (Billot et al., 2000, ECMA):

ùñ If the agents disagree on probability assessments, then they find it Pareto-improving to
engage in uncertainty-generating trade (i.e., to bet):

Disagreement about beliefs
EUT
ùñ Betting is Pareto-improving

ùñ Conversely, disagreement about probabilities is the only way that betting may be
Pareto-improving when starting from a no-betting allocation:

Common beliefs
EUT
ùñ Betting is not Pareto-improving (no-betting PO)
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Bilateral Risk Sharing: The Main Idea

We examine a situation in which both the agent and the counterparty are
Rank-Dependent Utilities (RDU), with different probability weighting functions of the
same underlying probability measure.

RDU is popular to model ambiguity-aversion and the over-weighing of the probabilities
of extreme (good and/or bad) events.

ùñ We show that, as long as the agents’ probability weighting functions satisfy a certain
consistency requirement, PO allocations are no-betting allocations.
ùñ For instance, when both agents are risk-averse (in a weak sense).

ùñ Otherwise, betting is PO.
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Setting

Let pS ,Σ,Pq be a non-atomic probability space, and let L1 pS ,Σ,Pq be the space of all
integrable, R-valued, and Σ-measurable functions on pS ,Σ,Pq.

There are two agents who seek a betting arrangement.

We assume no aggregate uncertainty in this economy, and the aggregate wealth is given
by W P R.

A (feasible) allocation is a pair pX1,X2q P L1 pS ,Σ,Pq ˆ L1 pS ,Σ,Pq such that
X1 ` X2 “W .

ùñ Trading is therefore seen as betting rather than as hedging or risk-sharing.
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Setting

A feasible allocation pX1,X2q is a Pareto-improvement over another feasible allocation
pY1,Y2q if

UipXiq ě UipYiq,

for i P t1, 2u, with at least one strict inequality.

A feasible allocation pX ˚1 ,X
˚
2 q is Pareto-Optimal (PO) if there is no other feasible

allocation pX̃1, X̃2q that is a Pareto-improvement over pX ˚1 ,X
˚
2 q.

A feasible allocation pX1,X2q is a no-betting allocation if for some i P t1, 2u and some
constant c P R, Xi “ c , P-a.s. (and hence X3´i “W ´ c , P-a.s.)

ùñ For example, pαW , p1´ αqW q is a no-betting allocation, for any α P R.
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Assumptions

The preferences of Agent 1 are to maximize:

U1pZq “
ż

u1 pZq dT1 ˝ P :“

ż `8

0
T1 pP pts P S : u1 pZ psqq ą tuqq dt

`

ż 0

´8

rT1 pP pts P S : u1 pZ psqq ą tuqq ´ 1s dt “
ż

u1pxqT 1
1p1´ FZ pxqqdFZ pxq.

The preferences of Agent 2 are to maximize:

U2pZq “
ż

u2

´

Z
¯

dT2 ˝ P.

The utility functions ui are increasing, strictly concave, continuously differentiable, and
satisfy the Inada conditions lim

xÑ´8
u1i pxq “ `8 and lim

xÑ`8
u1i pxq “ 0.

The probability weighting functions Ti : r0, 1s Ñ r0, 1s are such that Tip0q “ 0,
Tip1q “ 1, and functions Ti are absolutely continuous and increasing.
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What if there is aggregate uncertainty?

In part, an open question...

Chateauneuf et al. (2000), Carlier and Dana (2008), Chakravarty and Kelsey (2015) all
assume that the probability weighting functions are convex.

Xia and Zhou (2016) assume that all agents use the same probability weighting
function.

Jin et al. (2019) show that Pareto optimal risk-sharing contracts exist under technical
conditions that require aggregate market uncertainty.

It is well-known in economics that (no) aggregate uncertainty matters (Billot et al.,
2000, 2002; Chateauneuf et al., 2000; Ghirardato and Siniscalchi, 2018; B and
Ghossoub, 2020).
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Setting

´

pPV0

¯

sup
Y PL1pS,Σ,Pq

"
ż

u1 pW ´ Y q dT1 ˝ P :

ż

u2 pY q dT2 ˝ P ě V0

*

.

Lemma

(i) If the allocation pX ˚1 ,X
˚
2 q is PO, then X ˚2 solves Problem

´

pPV0

¯

with V0 :“ U2 pX ˚2 q.

(ii) For a given V0 P R, any solution Y ˚ to Problem
´

pPV0

¯

leads to an allocation

pW ´ Y ˚,Y ˚q that is PO.

(iii) If Y ˚ P L1 pS ,Σ,Pq solves Problem
´

pPV0

¯

for a given V0 P R, then U2 pY ˚q “ V0.
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Optimal Betting Between Two RDU Agents

Theorem

A feasible allocation pX ˚1 ,X
˚
2 q is Pareto-Optimal if there exists some λ˚ ą 0 such that

X ˚2 “ m´1
´

λ˚δ1
´

T1 pUq
¯¯

, where:

U is a random variable on pS ,Σ,Pq with a uniform distribution on p0, 1q;

m pxq :“
u11pW´xq

u12pxq
, for all x ě 0;

δ is the convex envelope on r0, 1s of the function Ψ : r0, 1s Ñ R defined by
Ψ ptq :“ rT2

`

T´1
1 ptq

˘

, where rT2 ptq “ 1´ T2 p1´ tq, for each t P r0, 1s.

Moreover, for every PO allocation pX ˚1 ,X
˚
2 q, there exists a λ˚ ą 0 such that X ˚2 has the

same distribution as m´1
´

λ˚δ1
´

T1 pUq
¯¯

under P.
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Convex envelope

The convex envelope of a function is the largest convex function that is point-wise
dominated by that function

- Thus, the convex envelope of f on the interval r0, 1s is defined as the greatest convex
function g on r0, 1s such that g pxq ď f pxq, for each x P r0, 1s.

Corollary

If both T1 and T2 are concave, then a feasible allocation pX ˚1 ,X
˚
2 q is PO if there exists some

λ˚ ą 0 such that

X ˚2 “ m´1
ˆ

λ˚
ˆ

T 12 p1´ Uq
T 11 pUq

˙˙

.

Moreover, for every PO allocation pX ˚1 ,X
˚
2 q, there exists a λ˚ ą 0 such that X ˚2 has the

same distribution as m´1
´

λ˚
´

T 12p1´Uq
T 11pUq

¯¯

under P.
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Example with Inverse S-shaped Probability Weighting Functions

As in Tversky and Kahneman (1992), let the probability weighting function Ti be given
by:

Ti ptq “
tγi

`

tγi ` p1´ tqγi
˘1{γi

, @t P r0, 1s,

for some γi P p0, 1s.

It then follows that:

Ψ ptq “ 1´

`

1´ T´1
1 ptq

˘γ2

´

`

T´1
1 ptq

˘γ2
`
`

1´ T´1
1 ptq

˘γ2
¯1{γ2

, @t P r0, 1s.
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Example, continued

Let γ1 “ 0.5 and γ2 “ 0.9. Then:
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Example, continued

Let W “ 0 and uipxq “
´ expp´βixq

βi
, for x P R and βi ą 0.

mpxq “ expppβ1 ` β2qxq for x P R, and so m´1pyq “ lnpyq{pβ1 ` β2q for y ą 0.

Let β1 “ 0.5 and β2 “ 0.5. A feasible allocation pX ˚1 ,X
˚
2 q is PO if there exists some

λ˚ ą 0 such that

X ˚2 “ m´1
´

λ˚δ1
´

T1 pUq
¯¯

“

ˆ

1
β1 ` β2

˙

ln
´

λ˚δ1
´

T1 pUq
¯¯

“ ln pλ˚q ` ln
´

δ1
´

T1 pUq
¯¯

.

Thus, the choice of λ˚ ą 0 leads to a deterministic side-payment (positive or negative),

in addition to the betting contract I ˚ pUq :“ ln
´

δ1
´

T1 pUq
¯¯

.
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Example, continued

Figure: This graph plots the function I˚, where I˚ pUq :“ ln
´

δ1
´

T1 pUq
¯¯

and U is a random

variable on pS ,Σ,Pq with a uniform distribution on p0, 1q. Agent 1 receives “large” gains with small
probability (gambling)
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Example, continued
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Figure: This graph plots the functions I˚, where I˚ pUq :“ ln
´

δ1
´

T1 pUq
¯¯

and U is a random

variable on pS ,Σ,Pq with a uniform distribution on p0, 1q. Here, we fix γ2 “ 0.9, and we vary the
parameter γ1.
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Example, continued

CEQ1 :“ u´1
1

ˆ
ż

u1 pX ˚1 q dT1 ˝ P
˙

and CEQ2 :“ u´1
2

ˆ
ż

u2 pX ˚2 q dT2 ˝ P
˙

,

with W “ 0.

γ1 0.3 0.4 0.5 0.6 0.7 0.8 0.9
CEQ1 7.66% 5.69% 3.53% 1.83% 0.72% 0.14% 0.00%
CEQ2 7.63% 5.72% 3.24% 1.81% 0.71% 0.14% 0.00%

Table: The certainty equivalents CEQ1 and CEQ2 of I˚, where I˚ pUq :“ ln
´

δ1
´

T1 pUq
¯¯

and U is a

random variable on pS ,Σ,Pq with a uniform distribution on p0, 1q. Here, we fix γ2 “ 0.9, and we vary
the parameter γ1.
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Example, Prelec-1

Prelec-1 (1998) probability weighting function:

Ti ptq “ expp´p´ lnptqqαi q, @t P r0, 1s,

for some αi ą 0.

- inverse-S shaped when αi P p0, 1q and S-shaped when αi ě 1.

- Ψ ptq “ 1´ expp´p´ lnp1´ expp´p´ lnptqq1{α1qqqα2q.
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Example, Prelec-1
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Figure: This graph plots the functions I˚, where I˚ pUq :“ ln
´

δ1
´

T1 pUq
¯¯

and U is a random

variable on pS ,Σ,Pq with a uniform distribution on p0, 1q. Here, α1 “ 0.4, and we vary the parameter
α2.
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Example, Prelec-1

α2 0.7 1 1.3 1.6 1.9
CEQ1 11.74% 15.47% 19.06% 22.23% 25.00%
CEQ2 6.28% 13.17% 18.98% 22.43% 24.57%

Table: The certainty equivalents CEQ1 and CEQ2 of I˚, where I˚ pUq :“ ln
´

δ1
´

T1 pUq
¯¯

and U is a

random variable on pS ,Σ,Pq with a uniform distribution on p0, 1q. Here, we fix α1 “ 0.4, and we vary
the parameter α1.
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Sunspots

Theorem
The following are equivalent:

(1) Ψptq :“ rT2
`

T´1
1 ptq

˘

ě t for all t P r0, 1s.

(2) There exists a Pareto optimal no-betting allocation.

(3) Any Pareto optimal allocation is a no-betting allocation.

(4) Every no-betting allocation is Pareto optimal.

Here, Ψptq :“ rT2
`

T´1
1 ptq

˘

ě t writes as

T1pzq ` T2p1´ zq ď 1, or T1pzq ´ z ` T2p1´ zq ´ p1´ zq ď 0, for all z P r0, 1s.

For instance, if for a small z P p0, 1q, Agent 1 over-weights good outcomes (T1pzq ą z) and
Agent 2 under-weights bad outcomes (1´ T2p1´ zq ă z), there is a desire to shift losses
from Agent 1 to Agent 2, and thus random Pareto allocations appear.
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Sunspots

Corollary

If both T1 and T2 are convex, then Ψptq ě t for all t P r0, 1s.

Thus, Ψptq ě t for all t P r0, 1s holds when both T1 and T2 are linear, and thus when
both agents are EU maximizers.
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Pessimism

The pessimism premium of Z is given by ∆T pZ q :“

ż

ZdP ´
ż

ZdT ˝ P.

V is pessimistic if ∆T pZ q ě 0, for all Z P L1 pS ,Σ,Pq.
Proposition: V is pessimistic if and only if T ptq ď t, for all t P r0, 1s.
Proposition: If both agents are pessimistic, then Ψptq ě t for all t P r0, 1s.
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Example, continued

For Tversky and Kahneman (1992)’ probability weighting functions:

Figure: Only close to the diagonal, there is no betting.
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Example, continued

For Prelec-1 (1998)’ probability weighting functions:

Tim J. Boonen 24 / 26



Example, continued

If Agent 1 is endowed with a Prelec-1 (1998) function, and Agent 2 with a Tversky and
Kahneman (1992) function:
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Conclusion

We give an explicit characterization of Pareto-optimal allocations, in various situations. In
particular, we show that:

(i) Betting is not PO when the two agents are averse to mean-preserving increases in risk
(i.e., probability weighting functions are convex).

(ii) If the probability weighting functions are non-convex, then no-betting allocations are
PO if it does hold that Ψpsq ě s.
ùñ Betting or no betting, this thus only follows from probability weighting functions Ti ; not on

the utilities.

(iii) The set of PO is fully described.
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