(No-)betting Pareto-optima under rank-dependent utility

Tim J. Boonen (t.j.boonen@uva.nl)

joint work with Mario Ghossoub (University of Waterloo), and an old version of the paper can be downloaded from SSRN:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=3524926.

A new version is available upon request.

Risk measures and uncertainty in insurance, Hannover,

May 20th, 2022

University of Amsterdam

Tim J. Boonen 1 / 26

To Bet or Not to Bet... In EUT

- When is it Pareto-optimal for risk-averse agents to take bets?
 - Starting from an environment with no aggregate uncertainty, under what conditions is it Pareto-improving to introduce uncertainty through betting (trade of an uncertain asset)?
- One obvious case is when the agents are risk-averse EU-maximizers and do not share beliefs (Billot et al., 2000, ECMA):
 - ⇒ If the agents disagree on probability assessments, then they find it Pareto-improving to engage in uncertainty-generating trade (i.e., to bet):

Disagreement about beliefs $\stackrel{EUT}{\Longrightarrow}$ Betting is Pareto-improving

⇒ Conversely, disagreement about probabilities is the only way that betting may be Pareto-improving when starting from a no-betting allocation:

Common beliefs $\stackrel{EUT}{\Longrightarrow}$ Betting is not Pareto-improving (no-betting PO)

Tim J. Boonen 2 / 26

Bilateral Risk Sharing: The Main Idea

- We examine a situation in which both the agent and the counterparty are Rank-Dependent Utilities (RDU), with different probability weighting functions of the same underlying probability measure.
- RDU is popular to model *ambiguity*-aversion and the over-weighing of the probabilities of extreme (good and/or bad) events.
 - We show that, as long as the agents' probability weighting functions satisfy a certain consistency requirement, PO allocations are no-betting allocations.
 - ⇒ For instance, when both agents are risk-averse (in a weak sense).

→ Otherwise, betting is PO.

Tim J. Boonen 3 / 26

Setting

- Let (S, Σ, P) be a non-atomic probability space, and let $L^1(S, \Sigma, P)$ be the space of all integrable, \mathbb{R} -valued, and Σ -measurable functions on (S, Σ, P) .
- There are two agents who seek a betting arrangement.
- We assume no aggregate uncertainty in this economy, and the aggregate wealth is given by $W \in \mathbb{R}$.
- A (feasible) allocation is a pair $(X_1, X_2) \in L^1(S, \Sigma, P) \times L^1(S, \Sigma, P)$ such that $X_1 + X_2 = W$.
 - ⇒ Trading is therefore seen as betting rather than as hedging or risk-sharing.

Tim J. Boonen 4 / 26

Setting

• A feasible allocation (X_1, X_2) is a Pareto-improvement over another feasible allocation (Y_1, Y_2) if

$$U_i(X_i) \geqslant U_i(Y_i),$$

for $i \in \{1, 2\}$, with at least one strict inequality.

- A feasible allocation (X_1^*, X_2^*) is Pareto-Optimal (PO) if there is no other feasible allocation $(\tilde{X}_1, \tilde{X}_2)$ that is a Pareto-improvement over (X_1^*, X_2^*) .
- A feasible allocation (X_1, X_2) is a no-betting allocation if for some $i \in \{1, 2\}$ and some constant $c \in \mathbb{R}$, $X_i = c$, P-a.s. (and hence $X_{3-i} = W c$, P-a.s.)

 \implies For example, $(\alpha W, (1-\alpha) W)$ is a no-betting allocation, for any $\alpha \in \mathbb{R}$.

Tim J. Boonen 5 / 26

Assumptions

• The preferences of Agent 1 are to maximize:

$$U_{1}(Z) = \int u_{1}(Z) dT_{1} \circ P := \int_{0}^{+\infty} T_{1}(P(\{s \in S : u_{1}(Z(s)) > t\})) dt$$
$$+ \int_{-\infty}^{0} [T_{1}(P(\{s \in S : u_{1}(Z(s)) > t\})) - 1] dt = \int u_{1}(x)T'_{1}(1 - F_{Z}(x))dF_{Z}(x).$$

• The preferences of Agent 2 are to maximize:

$$U_2(Z) = \int u_2(Z) \ dT_2 \circ P.$$

- The utility functions u_i are increasing, strictly concave, continuously differentiable, and satisfy the Inada conditions $\lim_{x\to -\infty} u_i'(x) = +\infty$ and $\lim_{x\to +\infty} u_i'(x) = 0$.
- The probability weighting functions $T_i : [0,1] \to [0,1]$ are such that $T_i(0) = 0$, $T_i(1) = 1$, and functions T_i are absolutely continuous and increasing.

Tim J. Boonen 6 / 26

What if there is aggregate uncertainty?

- In part, an open question...
- Chateauneuf et al. (2000), Carlier and Dana (2008), Chakravarty and Kelsey (2015) all assume that the probability weighting functions are convex.
- Xia and Zhou (2016) assume that all agents use the same probability weighting function.
- Jin et al. (2019) show that Pareto optimal risk-sharing contracts exist under technical conditions that require aggregate market uncertainty.
- It is well-known in economics that (no) aggregate uncertainty matters (Billot et al., 2000, 2002; Chateauneuf et al., 2000; Ghirardato and Siniscalchi, 2018; B and Ghossoub, 2020).

Tim J. Boonen 7 / 26

Setting

$$\left(\widehat{\mathcal{P}}_{V_{0}}\right) = \sup_{Y \in L^{1}(S, \Sigma, P)} \left\{ \int u_{1}\left(W - Y\right) \ dT_{1} \circ P : \int u_{2}\left(Y\right) \ dT_{2} \circ P \geqslant V_{0} \right\}.$$

Lemma

- (i) If the allocation (X_1^*, X_2^*) is PO, then X_2^* solves Problem $(\widehat{\mathcal{P}}_{V_0})$ with $V_0 := U_2(X_2^*)$.
- (ii) For a given $V_0 \in \mathbb{R}$, any solution Y^* to Problem $(\widehat{\mathcal{P}}_{V_0})$ leads to an allocation $(W - Y^*, Y^*)$ that is PO.
- (iii) If $Y^* \in L^1(S, \Sigma, P)$ solves Problem $(\widehat{\mathcal{P}}_{V_0})$ for a given $V_0 \in \mathbb{R}$, then $U_2(Y^*) = V_0$.

Optimal Betting Between Two RDU Agents

Theorem

A feasible allocation (X_1^*, X_2^*) is Pareto-Optimal if there exists some $\lambda^* > 0$ such that

$$X_{2}^{*}=m^{-1}\left(\lambda^{*}\delta'\Big(T_{1}\left(U\right)\Big)\right)$$
 , where:

- U is a random variable on (S, Σ, P) with a uniform distribution on (0, 1);
- $m(x) := \frac{u'_1(W-x)}{u'_2(x)}$, for all $x \ge 0$;
- δ is the convex envelope on [0,1] of the function $\Psi:[0,1] \to \mathbb{R}$ defined by $\Psi(t) := \widetilde{T}_2\left(T_1^{-1}(t)\right)$, where $\widetilde{T}_2(t) = 1 T_2(1-t)$, for each $t \in [0,1]$.

Moreover, for every PO allocation (X_1^*, X_2^*) , there exists a $\lambda^* > 0$ such that X_2^* has the same distribution as $m^{-1}\left(\lambda^*\delta'\Big(T_1\left(U\right)\Big)\right)$ under P.

Tim J. Boonen

Convex envelope

- The convex envelope of a function is the largest convex function that is point-wise dominated by that function
 - Thus, the convex envelope of f on the interval [0,1] is defined as the greatest convex function g on [0,1] such that $g(x) \le f(x)$, for each $x \in [0,1]$.

Corollary

If both T_1 and T_2 are concave, then a feasible allocation (X_1^*, X_2^*) is PO if there exists some $\lambda^* > 0$ such that

$$X_2^* = m^{-1} \left(\lambda^* \left(\frac{T_2'(1-U)}{T_1'(U)} \right) \right).$$

Moreover, for every PO allocation (X_1^*, X_2^*) , there exists a $\lambda^* > 0$ such that X_2^* has the same distribution as $m^{-1}\left(\lambda^*\left(\frac{T_2'(1-U)}{T_1'(U)}\right)\right)$ under P.

Tim J. Boonen 10 / 26

Example with Inverse S-shaped Probability Weighting Functions

• As in Tversky and Kahneman (1992), let the probability weighting function T_i be given by:

$$\mathcal{T}_{i}\left(t
ight)=rac{t^{\gamma_{i}}}{\left(t^{\gamma_{i}}+\left(1-t
ight)^{\gamma_{i}}
ight)^{1/\gamma_{i}}},\;orall t\in\left[0,1
ight],$$

for some $\gamma_i \in (0, 1]$.

• It then follows that:

$$\Psi(t) = 1 - \frac{\left(1 - T_1^{-1}(t)\right)^{\gamma_2}}{\left(\left(T_1^{-1}(t)\right)^{\gamma_2} + \left(1 - T_1^{-1}(t)\right)^{\gamma_2}\right)^{1/\gamma_2}}, \ \forall t \in [0, 1].$$

Tim J. Boonen 11 / 26

Let $\gamma_1 = 0.5$ and $\gamma_2 = 0.9$. Then:

Tim J. Boonen 12 / 26

- Let W=0 and $u_i(x)=\frac{-\exp(-\beta_i x)}{\beta_i}$, for $x\in\mathbb{R}$ and $\beta_i>0$.
- $m(x) = \exp((\beta_1 + \beta_2)x)$ for $x \in \mathbb{R}$, and so $m^{-1}(y) = \ln(y)/(\beta_1 + \beta_2)$ for y > 0.
- Let $\beta_1 = 0.5$ and $\beta_2 = 0.5$. A feasible allocation (X_1^*, X_2^*) is PO if there exists some $\lambda^* > 0$ such that

$$X_{2}^{*} = m^{-1} \left(\lambda^{*} \delta' \left(T_{1} \left(U \right) \right) \right) = \left(\frac{1}{\beta_{1} + \beta_{2}} \right) \ln \left(\lambda^{*} \delta' \left(T_{1} \left(U \right) \right) \right)$$
$$= \ln \left(\lambda^{*} \right) + \ln \left(\delta' \left(T_{1} \left(U \right) \right) \right).$$

• Thus, the choice of $\lambda^* > 0$ leads to a deterministic side-payment (positive or negative), in addition to the betting contract $I^*(U) := \ln \left(\delta' \Big(\mathcal{T}_1(U) \Big) \right)$.

Tim J. Boonen 13 / 26

Figure: This graph plots the function I^* , where $I^*(U) := \ln \left(\delta' \left(T_1(U)\right)\right)$ and U is a random variable on (S, Σ, P) with a uniform distribution on (0, 1). Agent 1 receives "large" gains with small probability (gambling)

Tim J. Boonen 14 / 26

Figure: This graph plots the functions I^* , where $I^*(U) := \ln \left(\delta' \left(T_1(U)\right)\right)$ and U is a random variable on (S, Σ, P) with a uniform distribution on (0, 1). Here, we fix $\gamma_2 = 0.9$, and we vary the parameter γ_1 .

Tim J. Boonen 15 / 26

$$CEQ_1 := u_1^{-1} \left(\int u_1(X_1^*) dT_1 \circ P \right) \text{ and } CEQ_2 := u_2^{-1} \left(\int u_2(X_2^*) dT_2 \circ P \right),$$
 with $W = 0$.

. –	0.3						
CEQ_1	7.66%	5.69%	3.53%	1.83%	0.72%	0.14%	0.00%
CEQ_2	7.63%	5.72%	3.24%	1.81%	0.71%	0.14%	0.00%

Table: The certainty equivalents CEQ_1 and CEQ_2 of I^* , where $I^*(U) := \ln \left(\delta' \left(T_1(U)\right)\right)$ and U is a random variable on (S, Σ, P) with a uniform distribution on (0, 1). Here, we fix $\gamma_2 = 0.9$, and we vary the parameter γ_1 .

Tim J. Boonen 16 / 26

Example, Prelec-1

Prelec-1 (1998) probability weighting function:

$$T_i(t) = \exp(-(-\ln(t))^{\alpha_i}), \ \forall t \in [0, 1],$$

for some $\alpha_i > 0$.

- inverse-S shaped when $\alpha_i \in (0, 1)$ and S-shaped when $\alpha_i \ge 1$.

 $- \ \Psi \left(t \right) = 1 - \exp (- (- \ln (1 - \exp (- (- \ln (t))^{1/\!\alpha_1})))^{\alpha_2}).$

Tim J. Boonen 17 / 26

Example, Prelec-1

Figure: This graph plots the functions I^* , where $I^*(U) := \ln \left(\delta' \left(\mathcal{T}_1(U) \right) \right)$ and U is a random variable on (S, Σ, P) with a uniform distribution on (0, 1). Here, $\alpha_1 = 0.4$, and we vary the parameter α_2 .

Tim J. Boonen 18 / 26

Example, Prelec-1

α_2	0.7	1	1.3	1.6	1.9
CEQ_1	11.74%	15.47%	19.06%	22.23%	25.00%
CEQ_2	6.28%	13.17%	18.98%	22.43%	24.57%

Table: The certainty equivalents CEQ_1 and CEQ_2 of I^* , where $I^*(U) := \ln \left(\delta' \left(T_1(U)\right)\right)$ and U is a random variable on (S, Σ, P) with a uniform distribution on (0, 1). Here, we fix $\alpha_1 = 0.4$, and we vary the parameter α_1 .

Tim J. Boonen 19 / 26

Sunspots

Theorem

The following are equivalent:

- (1) $\Psi(t) := \widetilde{T}_2\left(T_1^{-1}(t)\right) \geqslant t \text{ for all } t \in [0, 1].$
- (2) There exists a Pareto optimal no-betting allocation.
- (3) Any Pareto optimal allocation is a no-betting allocation.
- (4) Every no-betting allocation is Pareto optimal.

Here,
$$\Psi(t):=\widetilde{T}_{2}\left(T_{1}^{-1}\left(t\right)\right)\geqslant t$$
 writes as

$$T_1(z) + T_2(1-z) \leqslant 1$$
, or $T_1(z) - z + T_2(1-z) - (1-z) \leqslant 0$, for all $z \in [0,1]$.

For instance, if for a small $z \in (0,1)$, Agent 1 over-weights good outcomes $(T_1(z) > z)$ and Agent 2 under-weights bad outcomes $(1 - T_2(1-z) < z)$, there is a desire to shift losses from Agent 1 to Agent 2, and thus random Pareto allocations appear.

Tim J. Boonen 20 / 26

Sunspots

Corollary

If both T_1 and T_2 are convex, then $\Psi(t) \ge t$ for all $t \in [0, 1]$.

• Thus, $\Psi(t) \ge t$ for all $t \in [0, 1]$ holds when both T_1 and T_2 are linear, and thus when both agents are EU maximizers.

Tim J. Boonen 21 / 26

Pessimism

- The *pessimism premium* of Z is given by $\Delta_T(Z) := \int ZdP \int ZdT \circ P$.
- V is pessimistic if $\Delta_T(Z) \ge 0$, for all $Z \in L^1(S, \Sigma, P)$.
- **Proposition:** V is pessimistic if and only if $T(t) \leq t$, for all $t \in [0, 1]$.
- **Proposition:** If both agents are pessimistic, then $\Psi(t) \ge t$ for all $t \in [0, 1]$.

Tim J. Boonen 22 / 26

For Tversky and Kahneman (1992)' probability weighting functions:

Figure: Only close to the diagonal, there is no betting.

Tim J. Boonen 23 / 26

For Prelec-1 (1998)' probability weighting functions:

Tim J. Boonen 24 / 26

If Agent 1 is endowed with a Prelec-1 (1998) function, and Agent 2 with a Tversky and Kahneman (1992) function:

Tim J. Boonen 25 / 26

Conclusion

We give an explicit characterization of Pareto-optimal allocations, in various situations. In particular, we show that:

- (i) Betting is not PO when the two agents are averse to mean-preserving increases in risk (i.e., probability weighting functions are convex).
- (ii) If the probability weighting functions are non-convex, then no-betting allocations are PO if it does hold that $\Psi(s) \ge s$.
 - \implies Betting or no betting, this thus *only* follows from probability weighting functions T_i ; *not* on the utilities.

(iii) The set of PO is fully described.

Tim J. Boonen 26 / 26